English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64178/96951 (66%)
造訪人次 : 10090396      線上人數 : 19824
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/32927


    題名: 以不同統計方式建構精神分裂症療效之早期預測模式的優劣性比較
    其他題名: Comparing the superiority of early prediction model for treatment response of schizophrenia established by different statistical methods
    作者: 吳姿頤;Wu, Tzu-i
    貢獻者: 淡江大學數學學系碩士班
    張玉坤;Chang, Yue-cune
    關鍵詞: 精神分裂症;線性迴歸;邏輯式迴歸;Schizophrenia;Multiple Linear Regression;Multiple Logistic Regression
    日期: 2007
    上傳時間: 2010-01-11 02:58:57 (UTC+8)
    摘要: 精神分裂症的治療療程至少需持續4-8週,因為疾病的複雜性與病人對藥物反應的差異性,醫師很難在治療前依據病人臨床症狀與個人特質來評估病人對藥物反應的結果,為了避免病人接受無療效的藥物治療,建構一個可靠的療效預測模式顯得很重要。
    精神分裂症的治療療效是根據一些評估量表分數的變化做評估,例如簡短精神症狀評量表與活性與退化性症狀評量表。本文即比較兩種統計方法建構預測模式的優劣性,第一種是用Multiple Linear Regression直接對量表分數建構預測模式,然後再根據病人的預測分數判斷其是否有達到比治療前分數下降超過20%,依此預測出病人是否有療效。第二種是先判斷若治療後的量表分數比治療前下降20%為有效,否則為無效,然後利用Multiple Logistic Regression建立預測模式。再利用Chang et al [2006]所提出的方法預測出病人的療效。
    我們在幾種不同的情況下比較兩種預測方式的診斷準確度,結果顯示,用線性迴歸預測時會出現將量表分數預測偏低的情況,造成sensitivity高但是specificity很低的結果。而用邏輯式迴歸做出的預測結果,specificity比另外一種方法高但是sensitivity較低。比較兩種預測方法的ROC曲線下面積,邏輯式迴歸預測法都高於線性迴歸預測法
    The therapeutic period of schizophrenia needs to last at least for 4 to 8 weeks. Because of the complexity of the disease and the diversity medical responses of patients, it is hard for doctors to evaluate the results of medical response of patients by clinical symptoms and individualities before the treatments. It is intensely important to establish an authentic remedy prediction model in order to avoid the patients to accept ineffective medical treatments.
    The evaluation of the therapeutic effects on schizophrenia is based on the score variation of the certain evaluated scales, for example, Brief Psychiatric Rating Scale and Positive and Negative Syndrome Scale. In the present study, we compared two statistic methods to establish the pros and cons of prediction model. The first statistic method used multiple linear regression to establish prediction model directly by the scores of the scale. The second method determined its effectiveness first. If the scale score after the treatment decreases 20% or more compared with the baseline scale score, the result represents the treatment is effective; otherwise, the treatment is ineffective. Thereafter, we used multiple logistic regression to establish prediction model and then used the method which is brought up by Chang et al. [2006] to predict the effectiveness of the treatment for patients.
    We compared the diagnostic accuracy of two different prediction methods under various circumstances. As the results from the study, when multiple linear regression was used, the predicted scores of the scale tended to be underestimated. The results represented that multiple linear regression has higher sensitivity but lower specificity. However, the predicted results done by logistic regression has higher specificity but lower sensitivity compare to the results of multiple linear regression.And we compared the areas under the ROC curve of two prediction methods, the area is larger when we use multiple logistic regression to establish a prediction model.
    顯示於類別:[應用數學與數據科學學系] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    0KbUnknown382檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋