English  |  正體中文  |  简体中文  |  Items with full text/Total items : 54931/89277 (62%)
Visitors : 10601886      Online Users : 30
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/32916


    Title: 完全雙分圖之星林分解數的探討
    Other Titles: The study of the star arboricity of complete bipartite graphs
    Authors: 廖藝淳;Liao, Yi-chun
    Contributors: 淡江大學數學學系碩士班
    高金美;Kau, Chin-mei
    Keywords: 完全二分圖;星圖;星林圖;分割;星林分解數;complete bipartite graph;star;star forest;decomposition;star arboricity
    Date: 2006
    Issue Date: 2010-01-11 02:58:19 (UTC+8)
    Abstract: 假設V1﹐V2為兩個集合﹐若V=V1∪V2﹐V1∩V2=Φ且E={uv︱u V1, v V2}﹐則稱(V, E)為完全二分圖。若︱V1︱=m﹐︱V2︱=n﹐則此完全二分圖記為Km,n。當︱V1︱=1﹐︱V2︱=n﹐稱K1,n為星圖﹙Star﹚。當圖G的每一個最大連通子圖都是星圖時﹐我們稱圖G為星林圖﹙Star-forest﹚。將圖G分割成邊相異之星林圖時﹐其最少星林圖的個數稱為G的星林分解數﹐用*(G)表示。
    在本論文中﹐我們考慮的是完全二分圖K2n,2n+4﹐n≧3的星林分解數﹐首先我們將Egawa等在論文中所証之結果重新給予完整的証明﹐而獲得下面的結果:
    (1)*(K5,5)=4 (2)*(K5,6)=5 (3)*(K6,6)=5 (4)*(K6,8)=5 (5)*(K6,10)=6。
    進而推廣獲得*(K2n,2n+4)=n+3﹐n≧3。
    Let V1 and V2 be two set. If V=V1∪V2﹐V1∩V2=Φ, and E={uv︱u V1, v V2}﹐then we call (V,E) is a complete bipartite graph. If |V1| = m and |V2| = n, then this complete bipartite graph is denoted by Km,n. If |V1| = 1 and |V2| = n, then we call K1,n is a star. If every component of the graph G is a star, then we call G is a star forest. If G can be decomposed into star forests, we call the minimum number of star forests in the decomposition of G is the star arboricity of G, denoted by *(G).
    In this thesis, we consider the star arboricity of complete bipartite graph K2n,2n+4, as n≧3. First, we review the proof in the paper of Egawa et al. We get the following results:
    (1)*(K5,5)=4 (2)*(K5,6)=5 (3)*(K6,6)=5 (4)*(K6,8)=5 (5)*(K6,10)=6.
    Then we improve the result *(K2n,2n+4)=n+3﹐n≧3, and give the proof.
    Appears in Collections:[Graduate Institute & Department of Mathematics] Thesis

    Files in This Item:

    File SizeFormat
    0KbUnknown228View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback