English  |  正體中文  |  简体中文  |  Items with full text/Total items : 64194/96982 (66%)
Visitors : 8588991      Online Users : 7046
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/32907


    Title: 有關Alzer不等式的一些簡易的證明
    Other Titles: Simpler proofs of alzer's inequality
    Authors: 阮靜芬;Juan, Ching-fen
    Contributors: 淡江大學數學學系碩士班
    楊國勝;Yang, Gou-sheng
    Keywords: Alzer不等式;Cauchy均值定理;數學歸納法;Alzer inequality;Cauchy's Mean-Value Theorem;mathematical induction
    Date: 2005
    Issue Date: 2010-01-11 02:57:20 (UTC+8)
    Abstract: Alzer不等式為

    對於Alzer不等式,Sandor和Ume給了一個很簡易的證明,他們的證明包含了數學歸納法的原則和其他分析的方法。而Sandor和Ume的證明中,限制r為正的實數。
    在本論文中,我們將分別使用Sandor和Ume的證法,證明了Alzer不等式在任意實數r均可成立。在主要結論中,我們將任意實數r分為 r<-1;-1<r<0;r=-1;r=0,四種情況來探討。
    另外,我們也提出一些Alzer不等式的推廣,有N. Elezovic 和J. Pecaric的推廣;有F. Qi和L. Debnath 的推廣。最後,我們做出類似F. Qi和L. Debnath的推廣。
    The following is known as the Alzer inequality:

    Sandor and Ume gave a simple proof of Alzer inequality in the case that r is a positive real number,their proofs involve the principle of the mathematical induction and other analytical methods.
    We shall prove that the Alzer inequality holds for every real number r . The methods we used to prove are motivated by Sandor and Ume,respectively.
    We also state some generalization of Alzer inequality given by N. Elezovic and J. Pecaric;F. Qi and L. Debnath theorem,respectively . Finally,we give a result which is similar to that of F. Qi and L. Debnath’s theorem.
    Appears in Collections:[應用數學與數據科學學系] 學位論文

    Files in This Item:

    File SizeFormat
    0KbUnknown291View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback