淡江大學機構典藏:Item 987654321/32906
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 64178/96951 (66%)
Visitors : 9346684      Online Users : 14086
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/32906


    Title: 長期性資料分析之模型診斷
    Other Titles: Model diagnostics in longitudinal data analysis
    Authors: 楊恭漢;Yang, Kung-han
    Contributors: 淡江大學數學學系博士班
    張玉坤;Chang, Yue-cune
    Keywords: 長期性資料分析;隨機性檢定;模型診斷;廣義估計方程式;混合效應模型;Longitudinal data analysis;Tests for randomness;Model diagnostic;Generalized estimating equation;Mixed effects model
    Date: 2006
    Issue Date: 2010-01-11 02:57:15 (UTC+8)
    Abstract: 在醫學研究領域裡,長期性資料分析已經是一種經常被採用的分析方式。處理這種長期性資料的方法中,邊際效應的GEE方法以及混合效應模型經常用來探討引起疾病的可能危險因子與疾病風險間的相關性。但是,相關的模型診斷方法卻還沒有被正式地探討,也許不存在單一方法可以適用於所有長期性資料之模型診斷問題。主要的可能因素是個體內相依資料之差異以及重複測量次數之差異性很大。在長期性資料分析的模型診斷問題裡,單一指標(例如,連串檢定)是不可能解決所有模型診斷問題的。因此應用多重檢驗指標來描述其變異有其必要性。我們提出八種檢定方法來檢驗序列之隨機性並輔以傳統的殘差圖以及非傳統的個別殘差圖,以彌補長期性資料分析之模型診斷的相關問題。並且,我們將這些方法應用在台灣的四個臨床試驗研究。
    Longitudinal study has become one of the most commonly adopted designs in medical research. The generalized estimating equations (GEE) method and/or mixed effects models are employed very often in causal inferences. The related model diagnostic procedures are not yet fully formalized, and perhaps never will be. The potential causes of major problems are the high variety of the dependence within subjects and/or the number of repeated measurements. A single testing procedure, e.g. run test, is not possible to resolve all model diagnostics problems in longitudinal data analysis. Multiple quantitative indexes for model diagnostics are needed to take into account this variety. We propose eight testing procedures for randomness accompanied with some conventional and/or non-conventional plots to remedy model diagnostics in longitudinal data analysis. The proposed issue in this thesis is well illustrated with four clinical studies in Taiwan.
    Appears in Collections:[Department of Applied Mathematics and Data Science] Thesis

    Files in This Item:

    File SizeFormat
    0KbUnknown273View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback