淡江大學機構典藏:Item 987654321/32905
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 64188/96967 (66%)
Visitors : 11337856      Online Users : 76
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/32905


    Title: 比較季節性時間序列預測模型-臺灣地區能源消費之實證研究
    Other Titles: A comparison of seasonal time series models for forecasting the energy consumption in Taiwan
    Authors: 黃千珊;Huang, Chian-shan
    Contributors: 淡江大學數學學系碩士班
    伍志祥;Wu, Jyh-shyang
    Keywords: 時間序列;能源;能源消費量;Time series;Energy;energy consumption
    Date: 2008
    Issue Date: 2010-01-11 02:57:12 (UTC+8)
    Abstract: 近年來,全球能源價格節節上升,需求量及消費量大增,由鑑於此,本文將針對台灣地區能源消費量進行預測,希望能掌握未來消費量趨勢,所以將採用四種預測模型,分別為季節性整合自我迴歸移動平均模型(SARIMA)、季節性時間數列迴歸模型(RMTSE)及倒傳遞類神經網路(BPN),第四種模型將混和SARIMA與BPN(SARIMABP),並探討此混和性模型是否能改善其預測結果。研究結果發現,當時間序列之資料圖形震盪較為明顯採用BPN能得到較好預測,反之,資料圖形震盪較為平穩,則採用SARIMA能得到較好預測,且採用混合性模型更能改善預測誤差。
    Recently, the energy price keeps increasing.Both the demand and the consumption are on the rise.Due to these scenarios,this essay will try to predict the energy consumption in Taiwan,hoping to get a better grasp of the future trend.We will use the following four models for prediction,and they are Seasonal Autoregressive Integrated Moving Average Models(SARIMA),Regression Models with Time Series Errors (RMTSE),Back-propagation Network(BPN),and hybrid SARIMA and BPN(SARIMABP).The findings discovered that,at that time series of graph the sequence shook obviously uses BPN to be able to obtain a better
    forecast,otherwise,the graph shook steadily, used SARIMA to be able to obtain a better forecast,and adopt the mixing model to be able to improve the forecast error.
    Appears in Collections:[Department of Applied Mathematics and Data Science] Thesis

    Files in This Item:

    File SizeFormat
    0KbUnknown294View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback