English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64180/96952 (66%)
造訪人次 : 11332710      線上人數 : 70
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/32905


    題名: 比較季節性時間序列預測模型-臺灣地區能源消費之實證研究
    其他題名: A comparison of seasonal time series models for forecasting the energy consumption in Taiwan
    作者: 黃千珊;Huang, Chian-shan
    貢獻者: 淡江大學數學學系碩士班
    伍志祥;Wu, Jyh-shyang
    關鍵詞: 時間序列;能源;能源消費量;Time series;Energy;energy consumption
    日期: 2008
    上傳時間: 2010-01-11 02:57:12 (UTC+8)
    摘要: 近年來,全球能源價格節節上升,需求量及消費量大增,由鑑於此,本文將針對台灣地區能源消費量進行預測,希望能掌握未來消費量趨勢,所以將採用四種預測模型,分別為季節性整合自我迴歸移動平均模型(SARIMA)、季節性時間數列迴歸模型(RMTSE)及倒傳遞類神經網路(BPN),第四種模型將混和SARIMA與BPN(SARIMABP),並探討此混和性模型是否能改善其預測結果。研究結果發現,當時間序列之資料圖形震盪較為明顯採用BPN能得到較好預測,反之,資料圖形震盪較為平穩,則採用SARIMA能得到較好預測,且採用混合性模型更能改善預測誤差。
    Recently, the energy price keeps increasing.Both the demand and the consumption are on the rise.Due to these scenarios,this essay will try to predict the energy consumption in Taiwan,hoping to get a better grasp of the future trend.We will use the following four models for prediction,and they are Seasonal Autoregressive Integrated Moving Average Models(SARIMA),Regression Models with Time Series Errors (RMTSE),Back-propagation Network(BPN),and hybrid SARIMA and BPN(SARIMABP).The findings discovered that,at that time series of graph the sequence shook obviously uses BPN to be able to obtain a better
    forecast,otherwise,the graph shook steadily, used SARIMA to be able to obtain a better forecast,and adopt the mixing model to be able to improve the forecast error.
    顯示於類別:[應用數學與數據科學學系] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    0KbUnknown293檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋