English  |  正體中文  |  简体中文  |  Items with full text/Total items : 64178/96951 (66%)
Visitors : 9436848      Online Users : 8686
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/32888


    Title: 完全二分圖的P_t-因子分解的探討
    Other Titles: P_t-factorization of complete bipartite graphs
    Authors: 陳昆楠;Chen, Kun-nan
    Contributors: 淡江大學數學學系碩士班
    高金美;Kau, Chin-mei
    Keywords: 完全二分圖;路徑;因子;因子分解;complete bipartite graph;path;factor;factorization
    Date: 2008
    Issue Date: 2010-01-11 02:56:15 (UTC+8)
    Abstract: 假設F、G、H為三個圖,若H為G的一個生成子圖,且H中的每個分支都與F同構,則稱G有一個F-因子。令G和F為兩個圖,若G可分割成G_1,G_2,…,G_n,且每個G_i均為G的F-因子,則稱G有F-因子分解。在論文中,我們探討K_{m,n}的P_t-因子分解問題時,將t分為偶數和奇數來討論。首先,當t為偶數時,我們分別得到(1)若m為正整數,則K_{m,m}有P_2-因子分解。(2)當t為大於等於2的正整數時,若K_{m,n}有P_t-因子分解,則對於每一個正整數s,K_{ms,ns}有P_t-因子分解。(3)K_{m,n}有P_2k-因子分解的充分必要條件為m=n且m≡0(mod k(2k-1))。最後,當t為奇數時,我們分別獲得(1)若k為奇數,對於所有正整數s,則K_{ks,(k+1)s}有P_2k+1-因子分解。(2)若k為正整數,對於所有正整數s,則K_{2ks,2(k+1)s}有P_2k+1-因子分解。(3) K_{m,m}有P_2k+1-因子分解的充分必要條件為m≡0(mod 4k(2k+1))。
    Suppose F,G and H are three graphs.If H is a spanning subgraph of G and each components of H is isomorphic to F,then G has F-factor.Let G and F are two graphs.If G can decompose G_1,G_2, … , G_n,and G_i is F-factor of G,then G has F-factorization.In this thesis,we discuss the problem about K_{m,n} has P_t-factorization.We will discuss as t is odd and even.First,we discuss as t is odd.We obtain three result:(1)If m is positive, then K_{m,m} has P_2-factorization.(2)Let t is positive integer and t >=2,if K_{m,n} has P_t-factorization,then K_{ms,ns} has P_t-factorization,for all s is positive integer.(3)K_{m,n} has P_2k-factorization if and only if m=n and m≡0(mod k(2k-1)).At last,we discuss as t is even.We get three result:(1)If k is odd and k is positive integer,for all s is positive integer,then K_{ks,(k+1)s} has P_2k+1-factorization.(2)If k is positive integer,for all s is positive integer, then K_{2ks,2(k+1)s} has P_2k+1-factorization.(3)K_{m,n} has P_2k+1-factorization if and only if m≡0(mod 4k(2k+1)).
    Appears in Collections:[應用數學與數據科學學系] 學位論文

    Files in This Item:

    File SizeFormat
    0KbUnknown254View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback