English  |  正體中文  |  简体中文  |  Items with full text/Total items : 49633/84879 (58%)
Visitors : 7697371      Online Users : 67
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/32877


    Title: 多變數的拉格朗日多項式之研究
    Other Titles: multivariable lagrange polynomials
    Authors: 劉鑠榮;Liu, Shuoh-jung
    Contributors: 淡江大學數學學系博士班
    陳功宇;Chen, Kung-yu
    Keywords: 拉格朗日多項式;雅可比多項式;拉蓋爾多項式;超幾何多項式;雙側生成函數;Lauricella 函數;Appell 函數;Lagrange polynomials;Jacobi polynomials;Laguerre polynomials;Hypergeometric polynomials;Bilateral generating functions;Lauricella functions;Appell functions
    Date: 2009
    Issue Date: 2010-01-11 02:55:31 (UTC+8)
    Abstract: 本論文主要是針對多變數的拉格朗日多項式(Multivariable Lagrange polynomials)方面所作之研究。
    第一章:緒論。
    第二章:導出多變數的拉格朗日多項式相關的一些等式,並且在雙變數的情況下,可經由一些轉換即可推廣成,相關文獻中所研究(雅可比多項式、拉蓋爾多項式、超幾何多項式)的主要等式。另外也研究一些線性偏微分算子與多變數的拉格朗日多項式之間的關係。
    第三章:將三個變數的拉格朗日多項式與Appell函數的雙側生成函數(Bilateral generating functions),推廣成多變數的拉格朗日多項式與Lauricella函數的雙側生成函數。
    第四章:藉由變數變換再取極限,去導出新的多項式,並求出對應於拉格朗日多項式的一些等式和遞迴關係。
    第五章:利用Bailey 三次轉換去導出雙重級數的等式,並藉此去求出
    Srivastava-Daoust 的轉換公式與歸約公式。
    The main purpose of this thesis is to investigate multivariable Lagrange polynomials.
    In Chapter 1, introduction.
    In Chapter 2, we derive some identities of Lagrange polynomials of two variables and observe the relations between Lagrange polynomials and Jacobi, Laguerre
    and Hypergeometric polynomials, respectively. On the other hand, we investigate linear partial differential operators on multivariable Lagrange polynomials.
    In Chapter 3, we generalize bilateral generating functions for the Lagrange polynomials with three variables and the Appell functions, as bilateral generating functions for the Lagrange polynomials with multivariable and the Lauricella functions.
    In Chapter 4, using the method of substitution and taking limit, we obtain some new polynomials. We obtain some identities and recurrence relations.
    In Chapter 5, Based upon Bailey’s cubic transformations, we construct some identities and use item to find transformation and reduction formulas for the
    Srivastava-Daoust hypergeometric function in two variables.
    Appears in Collections:[數學學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat
    0KbUnknown243View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback