English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 49378/84106 (59%)
造訪人次 : 7372683      線上人數 : 82
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/32877


    題名: 多變數的拉格朗日多項式之研究
    其他題名: multivariable lagrange polynomials
    作者: 劉鑠榮;Liu, Shuoh-jung
    貢獻者: 淡江大學數學學系博士班
    陳功宇;Chen, Kung-yu
    關鍵詞: 拉格朗日多項式;雅可比多項式;拉蓋爾多項式;超幾何多項式;雙側生成函數;Lauricella 函數;Appell 函數;Lagrange polynomials;Jacobi polynomials;Laguerre polynomials;Hypergeometric polynomials;Bilateral generating functions;Lauricella functions;Appell functions
    日期: 2009
    上傳時間: 2010-01-11 02:55:31 (UTC+8)
    摘要: 本論文主要是針對多變數的拉格朗日多項式(Multivariable Lagrange polynomials)方面所作之研究。
    第一章:緒論。
    第二章:導出多變數的拉格朗日多項式相關的一些等式,並且在雙變數的情況下,可經由一些轉換即可推廣成,相關文獻中所研究(雅可比多項式、拉蓋爾多項式、超幾何多項式)的主要等式。另外也研究一些線性偏微分算子與多變數的拉格朗日多項式之間的關係。
    第三章:將三個變數的拉格朗日多項式與Appell函數的雙側生成函數(Bilateral generating functions),推廣成多變數的拉格朗日多項式與Lauricella函數的雙側生成函數。
    第四章:藉由變數變換再取極限,去導出新的多項式,並求出對應於拉格朗日多項式的一些等式和遞迴關係。
    第五章:利用Bailey 三次轉換去導出雙重級數的等式,並藉此去求出
    Srivastava-Daoust 的轉換公式與歸約公式。
    The main purpose of this thesis is to investigate multivariable Lagrange polynomials.
    In Chapter 1, introduction.
    In Chapter 2, we derive some identities of Lagrange polynomials of two variables and observe the relations between Lagrange polynomials and Jacobi, Laguerre
    and Hypergeometric polynomials, respectively. On the other hand, we investigate linear partial differential operators on multivariable Lagrange polynomials.
    In Chapter 3, we generalize bilateral generating functions for the Lagrange polynomials with three variables and the Appell functions, as bilateral generating functions for the Lagrange polynomials with multivariable and the Lauricella functions.
    In Chapter 4, using the method of substitution and taking limit, we obtain some new polynomials. We obtain some identities and recurrence relations.
    In Chapter 5, Based upon Bailey’s cubic transformations, we construct some identities and use item to find transformation and reduction formulas for the
    Srivastava-Daoust hypergeometric function in two variables.
    顯示於類別:[數學學系暨研究所] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    0KbUnknown238檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋