English  |  正體中文  |  简体中文  |  Items with full text/Total items : 52058/87187 (60%)
Visitors : 8901180      Online Users : 58
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/32867

    Title: Amari模型單峰解和多峰解的存在性與穩定性
    Other Titles: Existence and stability of single-bump and multi-bump solutions of an amari model
    Authors: 林 素 心;Lin, Su-shing
    Contributors: 淡江大學數學學系博士班
    Keywords: 中心流形;不變葉理;漸進相;多峰解;center manifold;invariant foliation;asymptotic phase;multi-bump solution
    Date: 2007
    Issue Date: 2010-01-11 02:52:44 (UTC+8)
    Abstract: Amari模型乃是模擬包含激勵及抑制作用的單層齊次神經網路之積分微分方程式,本篇論文主要是討論此模型單峰解和多峰解的存在性及穩定性。若將幾個shift夠大的單峰解組合在一起,便可製造出多峰解。若將此積分微分方程式視為在無限維中之動態系統,則利用耦函數可計算出Frechet導數在單峰解和多峰解的分譜,以便討論其動態性質。應用中心流形理論及葉理可以探討多峰解的漸進相之穩定性。數值模擬的結果亦會發現一些分岐現象的產生。最後,當耦函數滿足某些特定條件時, 我們找到2-峰解存在的充分條件。
    We consider the existence and stability of single-bump and multi-bump solutions of an Amari model, a class of integral-differential equations modeling a single layer of homogeneous neural network with both excitatory and inhibitory neuron. Existence results are obtained by combining several shifts of a one-bump solution. Dynamical properties are obtained by considering the equation as an infinite dimensional dynamical systems and the spectrum of single-bump and multi-bump solutions in terms of the coupling functions. The center manifold theory and its foliation are used to show exponential stability with asymptotic phase for multi-bump solutions. Numerical results for some possible bifurcation phenomena are also presented. Finally, we give a sufficient condition such that a 2-bump solution exists while the coupling function satisfying some particular conditions.
    DOI: 10.6846%2fTKU.2007.00319
    Appears in Collections:[數學學系暨研究所] 學位論文

    Files in This Item:

    File Description SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback