淡江大學機構典藏:Item 987654321/32856
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64191/96979 (66%)
造访人次 : 8526080      在线人数 : 8330
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/32856


    题名: 重複捕取實驗中自變數有測量誤差時的近似估計方法
    其它题名: Approximate estimations in capture-recapture experiment when covariates are measured with errors
    作者: 陳飛穎;Chen, Fei-yin
    贡献者: 淡江大學數學學系碩士班
    黃逸輝;Huang, Yih-huei
    关键词: 重複捕取實驗;測量誤差;母體總數;迴歸校正方法;條件 score 函數方法;小測量誤差逼近方法;Capture-recapture experiment;measurement error;population size;RRC (refined regression calibration);CS (conditional score);SEA (small errors approximation)
    日期: 2005
    上传时间: 2010-01-11 02:52:01 (UTC+8)
    摘要: 在迴歸分析時, 我們常會碰到資料無法精準地測量或無法直接觀測的情況。 而若自變數有測量誤差, 此誤差對於估計迴歸係數會造成偏差。 過去的文獻對於重複捕取實驗 (capture-recapture experiment) 的異質性模型 (heterogeneity model) 中自變數含有測量誤差時, 造成估計的偏差的情況, 並未加以深入探討。 Hwang 與 Huang (2003 與 2005) 首先分別以 RRC (refined regression calibration) 方法與 CS (conditional score) 方法來修正迴歸參數估計量的偏差及提出估計母體總數的方法。

    本文將探討在封閉性母體 (closed population) 假設下離散型重複捕取實驗中, 若自變數含有小測量誤差 (small measurement error) 時, 如何以泰勒展式近似原始的估計方程式與母體估計量來進行分析, 進而提供一個方便、 有效率且無需許多假設的估計方法。 最後我們以模擬方法考量自變數與隨機誤差在不同分配之下各種估計方法的表現, 並計算不同估計方法的平均估計值、 相對偏差 (RB) 與估計值的樣本標準差、 平均估計標準差、 樣本均方根誤差 (RMSE) 與 95% 信賴區間涵蓋率 (CP), 最後並對所得的結果加以討論。
    In a regression analysis, it may happen that variables are not measured precisely. When the covariates are measured with measurement errors, the estimation in regression parameters will be biased in usual. However, for the capture-recapture experiments, the investigations into the effect of measurement errors have been very limited.

    Besides the approaches of regression calibration and conditional score that proposed by Hwang and Huang (2003, 2005), the present paper disscusses an approximate estimation through Taylor expansion for the discrete time capture-recapture experiment. As a result, we find that the small measurement error approximation is a convenient and efficient way for estimaing both in regression parameters and in the population size. Simulation results are also provided for different distributions of measurement error and covariate.
    显示于类别:[應用數學與數據科學學系] 學位論文

    文件中的档案:

    档案 大小格式浏览次数
    0KbUnknown346检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈