English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 49633/84879 (58%)
造訪人次 : 7694878      線上人數 : 74
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/32851


    題名: Groebner basis and invariants
    其他題名: Groebner基底與不變量
    作者: 朱建帆;Chu, Chien-fan
    貢獻者: 淡江大學數學學系碩士班
    胡守仁;Hu, Shou-jen
    關鍵詞: 一個理想上的Groebner基底;Buchberger的運算法;不變量環;Reynolds算子;Poincare級數;Hilbert-Serre定理;Molien定理;Hironaka分解;Groebner basis for an ideal;Buchberger's algorithm;ring of invariant;Reynolds operator;Poincare series;Hilbert-Serre theorem;Molien theorem;Hironaka decomposition
    日期: 2009
    上傳時間: 2010-01-11 02:51:46 (UTC+8)
    摘要: 在這篇論文中,我們將會學習Groebner基底和不變量環的一些基本性質。我們將給予一些例題去說明如何利用Groebner基底來解聯立方程式,並將Groebner基底應用在理想元素的隸屬問題以及求兩個理想的交集。我們也將它使用在不變量環的一些性質,這些性質主要描述說當給定一個有限群後,它的不變量環生成元可利用 Groebner基底來求出關係。
    這篇論文主要分成三節。第一節是探討有關Groebner基底的基本性質,並且討論當在解聯立方程式時所使用到的消去和擴展定理。第二節探討當給定任何一個有限群時我們如何創造出它的不變量環。在最後一節,我們將給一些可以使用不變量環的例子。第一個例子,我們探討一個立方體於對稱群的所有不變量。而第二個例子我們將會使用電腦來幫我們求出它的不變量環。這篇論文裡我們使用Maple來幫我們計算。
    In this thesis, we shall study some basic properties of Groebner basis and ring of invariants. We shall give some examples to show the use of Groebner basis in solving polynomial equation, determining ideal memberships and intersection of ideals. We shall also discuss basic theories on ring of invariant. Some examples on the construction of generators for a ring of invariant of finite group will be given. Relations among the generators will be found by using Groebner basis.
    This thesis is divided into three sections. Section 1 is about basic properties of Groebner basis, then talk about elimination and extension theorems which is used in solving
    polynomial equation. Section 2 is about how to construct the ring of invariant when giving a finite group. In the last section, we shall give some examples on calculation of ring of invariant. In particular, we discuss the invariants of the symmetry group of a cube. We also
    give an example to show how to compute explicitly ring of invariant of an abelian group. Groebner basis calculation is implemented in many computer algebra systems, such as Maple, MATHEMATICA, Cocoa etc. In this thesis, we use Maple to do our calculations.
    顯示於類別:[數學學系暨研究所] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    0KbUnknown250檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋