English  |  正體中文  |  简体中文  |  Items with full text/Total items : 50122/85141 (59%)
Visitors : 7892398      Online Users : 59
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/32501


    Title: 具等向性彎曲剛度但無自發扭曲之長細螺旋杆的彈性性質
    Other Titles: Elasticity of a helical filament with isotropic bending rigidity and free of spontaneous torsion
    Authors: 詹政諱;Jan, Jeng-huei
    Contributors: 淡江大學物理學系碩士班
    周子聰;Zhou, Zicong
    Keywords: 螺旋;長杆;彈性;Elastic rod;Helix
    Date: 2006
    Issue Date: 2010-01-11 02:14:50 (UTC+8)
    Abstract: 我們利用歐拉角推導出了一根橫切面為圓形,但是無自發扭曲的均勻彈性杆之形狀方程式。我們證明了兩端閉合的細杆通常存在著平面形曲線形的解。我們探討了在外力與外力矩下,形成螺旋杆的邊界條件暨實驗條件。我們發現要形成螺旋形,Euler角 必須為常數並由自然曲率所決定。我們研究了螺旋杆在外力和外力矩下的彈性性質。我們嚴格證明了當力矩為零時,在改變外力時螺旋杆的伸長不會有突然跳躍的現象。這行為與一根有自發扭曲的均勻彈性杆之行為相當不同,並解釋了為何在巨觀力學實驗中難以觀察到這種跳躍。然而在非零值的固定外力矩下,改變外力則螺旋的伸長可能會有一次突然的轉變。
    We derive the shape equations in terms of Euler angles for a uniform elastic filament with circular cross section but free of spontaneous torsion. We show that in general there are planar curve solutions for a closed rod. We study the boundary conditions (i.e., experimental conditions in a force experiment) to form a helical filament under external force and twisting. We find that to form a helix, the Euler angle must be a constant determined by the spontaneous curvatures. We study the elasticity of a helical filament under different conditions. We find that the extension of a helix under fixed and finite torque may subject to a one-step sharp transition with increasing stretching force. However, we show exactly that there is not jump of extension for a helical filament free of external torque. This behavior is quite different from a uniform elastic rod with circular cross section and spontaneous torsion, and provides another very important reason why one cannot observe the sharp jump of extension for most macroscopic helical springs.
    Appears in Collections:[物理學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat
    0KbUnknown199View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback