English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 49064/83169 (59%)
造訪人次 : 6959895      線上人數 : 49
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/31684


    題名: 報酬可預測下之長期投資組合配置決策-臺灣實證研究
    其他題名: Investing for the long run when returns are predictable : an empirical study of Taiwan
    作者: 杜佩蓉;Tu, Pei-jung
    貢獻者: 淡江大學財務金融學系碩士班
    黃文光;Wong, Woon-kong
    關鍵詞: 資產配置;長期投資;貝氏法;向量自我迴歸;風險值;Asset Allocation;Long-Term Investment;Bayesian;Vector Autoregression Model;Value at Risk
    日期: 2007
    上傳時間: 2010-01-11 01:07:52 (UTC+8)
    摘要: 本論文主要研究在資產報酬可被預測時,長期下投資人的最適投資組合配置。根據貝氏法估計VAR(向量自我迴歸模型)模型中的不確定參數,在投資人最大期望效用值下決定該投資組合的最適配置。實證分析顯示,從模型的參數真實值不確定性因素探討考慮估計風險對決策的影響及加入益本比對預測投資組合最適配置的影響有顯著的不同。在考慮估計風險及可預測變數後,長期下投資人可以投資較多部位在股票等高風險性資產上。最後,計算在不同投資組合配置下的VaR(風險值)來做比較分析。
    The study examine how the evidence of predictability in asset returns affects optimal portfolio choice for investors with long horizon . According to Bayesian, we estimate uncertainty about the true values of VAR(Vector Autoregression) model and decide optimal portfolio allocation with the max expected utility of investor. The empirical results show that the weight of optimal portfolio can be very different from short-horizon and long-horizon. Considering estimation risk and predictor makes investors allocate substantially more to stock with the long horizons. Finally, we calculate the VaR (Value at Risk) to analyze the different portfolio.
    顯示於類別:[財務金融學系暨研究所] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    0KbUnknown150檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋