English  |  正體中文  |  简体中文  |  Items with full text/Total items : 51756/86973 (60%)
Visitors : 8361084      Online Users : 79
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/31677

    Title: 預測財務波動性 : CARR模型的應用
    Other Titles: Forecasting financial volatilities with extreme values : the conditional autoregressive range (CARR) model
    Authors: 古欣卉;Ku, Hsin-hui
    Contributors: 淡江大學財務金融學系碩士班
    李命志;Lee, Ming-chih
    Keywords: 條件變幅自我相關模型;一般化自我迴歸條件異質變異數模型;變幅;波動性;CARR;GARCH;Range;Volatility
    Date: 2006
    Issue Date: 2010-01-11 01:07:25 (UTC+8)
    Abstract: 金融市場瞬息萬變,若能更確切地捕捉資產價格波動的特性,將有助於投資組合配置的最適化,進而能有效地控制風險,帶給投資人更多的助益。目前在波動性預測模型中被應用最廣泛的是ARCH/GARCH族,而且在實證上也獲得相當不錯的成效。本文採用Chou(2005)CARR模型驗證在黃金現貨價格及那斯達克股價指數上是否改善波動性的預測能力。
    第一部份以黃金現貨價格、那斯達克股價指數為研究對象,分別進行CARR模型和GARCH模型樣本外波動性預測能力之比較。第二部份以有平均數的GARCH模型、AR(1)-GARCH模型及GARCH-M(GARCH in Mean)模型進行比較,檢視何者為最佳波動性預測模型。實證結果顯示,以那斯達克股價指數為研究標的時,CARR模型的樣本外預測能力較佳。
    Volatility plays an important role in finance. If we can capture the characteristics of the motions of assets precisely, we could make good portfolios and control risks efficiently. GARCH models have been used in the forecast of volatilities generally, and performed well in many empirical studies. However, Chou(2005) proposed the CARR model and compared in the CARR model and traditional GARCH model based on the data of S&P 500 index. CARR is better in the volatility forecasting. This paper tests and verifies the forecasting power of the CARR model based on the Gold price and the stock price index of NASDAQ.
    We choose the Gold price and the stock price index of NASDAQ to compare the CARR and GARCH models in out-of-sample forecast. And then we apply GARCH, GARCH-M and AR(1)-GARCH models to test which model is the best. Our empirical results show that the CARR model is preferable to the GARCH model only in the data of NASDAQ.
    Appears in Collections:[財務金融學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback