淡江大學機構典藏:Item 987654321/31592
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 64178/96951 (66%)
Visitors : 9367815      Online Users : 14232
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/31592


    Title: 厚尾GARCH模型在台灣金融資產之應用
    Other Titles: Garch models with fat-tailed distribution applied in Taiwn financial assets
    厚尾GARCH模型在臺灣金融資產之應用
    Authors: 蔡宗和;Tsai, Tsung-ho
    Contributors: 淡江大學財務金融學系碩士班
    李命志;Lee, Ming-chih
    Keywords: GARCH;GARCH-t;GARCH-NoVaS;厚尾;GARCH;GARCH-t;GARCH-NoVaS;Fat-tail
    Date: 2005
    Issue Date: 2010-01-11 01:01:11 (UTC+8)
    Abstract: 本文研究對象為台灣加權股價指數、美元兌新台幣匯率、台積電股價、新竹商銀股價等日資料,分別以Gaussian GARCH、GARCH-t、GARCH-NoVaS等3種模型來進行實證,並以MAD作為比較基準,探討當金融資產報酬率存在高峰厚尾現象時,對於日報酬平方而言,何種模型的預測能力較佳。
    實證結果證明GARCH-NoVaS模型的預測能力較Gaussian GARCH以及GARCH-t為佳,亦即當金融資產報酬率存在高峰態與厚尾現象時,GARCH-NoVaS不僅可以解決Gaussian GARCH所無法捕捉到的厚尾現象,亦可修正GARCH-t的低峰態的缺點,對於資產報酬率波動性之GARCH殘差的設定,比過去常使用的常態分配與t分配更為適當。
    This research introduce three different GARCH models, they are Gaussian GARCH, GARCH-t, and GARCH-NoVaS. To evaluate and compare the predictive ability of three different GARCH models with respect to MAD, we focus on four well-know datasets, they are Taiwan weighted stock index, U.S. exchange rate, and stock price of Taiwan Semiconductor Manufacturing Co. and Hsinchu International Bank. We also discuss which model’s performance is better when the price return is leptokurtic and fat-tailed.
    The result show that the predictive ability of GARCH-NoVaS is much better than the others. GARCH-NoVaS can correct not only fat-tailed property which Gaussian GARCH cannot describe, but also the defect of low kurtosis of GARCH-t. The assumption of GARCH residual in GARCH-NoVaS is more appropriate than Gaussian GARCH and GARCH-t.
    Appears in Collections:[Graduate Institute & Department of Banking and Finance] Thesis

    Files in This Item:

    File SizeFormat
    0KbUnknown384View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback