English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64178/96951 (66%)
造訪人次 : 9307150      線上人數 : 1313
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/31592


    題名: 厚尾GARCH模型在台灣金融資產之應用
    其他題名: Garch models with fat-tailed distribution applied in Taiwn financial assets
    厚尾GARCH模型在臺灣金融資產之應用
    作者: 蔡宗和;Tsai, Tsung-ho
    貢獻者: 淡江大學財務金融學系碩士班
    李命志;Lee, Ming-chih
    關鍵詞: GARCH;GARCH-t;GARCH-NoVaS;厚尾;GARCH;GARCH-t;GARCH-NoVaS;Fat-tail
    日期: 2005
    上傳時間: 2010-01-11 01:01:11 (UTC+8)
    摘要: 本文研究對象為台灣加權股價指數、美元兌新台幣匯率、台積電股價、新竹商銀股價等日資料,分別以Gaussian GARCH、GARCH-t、GARCH-NoVaS等3種模型來進行實證,並以MAD作為比較基準,探討當金融資產報酬率存在高峰厚尾現象時,對於日報酬平方而言,何種模型的預測能力較佳。
    實證結果證明GARCH-NoVaS模型的預測能力較Gaussian GARCH以及GARCH-t為佳,亦即當金融資產報酬率存在高峰態與厚尾現象時,GARCH-NoVaS不僅可以解決Gaussian GARCH所無法捕捉到的厚尾現象,亦可修正GARCH-t的低峰態的缺點,對於資產報酬率波動性之GARCH殘差的設定,比過去常使用的常態分配與t分配更為適當。
    This research introduce three different GARCH models, they are Gaussian GARCH, GARCH-t, and GARCH-NoVaS. To evaluate and compare the predictive ability of three different GARCH models with respect to MAD, we focus on four well-know datasets, they are Taiwan weighted stock index, U.S. exchange rate, and stock price of Taiwan Semiconductor Manufacturing Co. and Hsinchu International Bank. We also discuss which model’s performance is better when the price return is leptokurtic and fat-tailed.
    The result show that the predictive ability of GARCH-NoVaS is much better than the others. GARCH-NoVaS can correct not only fat-tailed property which Gaussian GARCH cannot describe, but also the defect of low kurtosis of GARCH-t. The assumption of GARCH residual in GARCH-NoVaS is more appropriate than Gaussian GARCH and GARCH-t.
    顯示於類別:[財務金融學系暨研究所] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    0KbUnknown384檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋