English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 55184/89457 (62%)
造访人次 : 10667492      在线人数 : 23
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/27855


    题名: Dynamics of growing surfaces by linear equations in 2+1 dimensions
    作者: Pang, Ning-Ning;Li, Wan-Ju;Chang, Yu-Chiao;Tzeng, Wen-Jer;Wang, Juven
    贡献者: 淡江大學物理學系
    关键词: Computer simulation;Correlation methods;Function evaluation;Rough set theory;Correlation functions;Rigorous analysis;Super rough interfaces;Linear equations
    日期: 2007-01
    上传时间: 2013-07-09 15:20:22 (UTC+8)
    出版者: College Park: American Physical Society
    摘要: An extensive study on the (2+1)-dimensional super-rough growth processes, described by a special class of linear growth equations, is undertaken. This special class of growth equations is of theoretical interests since they are exactly solvable and thus provide a window for understanding the intriguing anomalous scaling behaviors of super-rough interfaces. We first work out the exact solutions of the interfacial heights and the equal-time height difference correlation functions. Through our rigorous analysis, the detailed asymptotics of the correlation function in various time regimes are derived. Our obtained analytical results not only affirm the applicability of anomalous dynamic scaling ansatz but also offer a solid example for understanding a distinct universal feature of super-rough interfaces: the local roughness exponent is always equal to 1. Furthermore, we also perform some numerical simulations for illustration. Finally, we discuss what are the essential ingredients for constructing super-rough growth equations.
    關聯: Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) 75(1), 011603(8pages)
    DOI: 10.1103/PhysRevE.75.011603
    显示于类别:[物理學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    1539-3755_75(1)p011603(8pages).pdf352KbAdobe PDF168检视/开启
    index.html0KbHTML194检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈