English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 57042/90725 (63%)
造访人次 : 12445234      在线人数 : 141
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/27845


    题名: Interfaces with superroughness
    作者: Pang, Ning-Ning;Tzeng, Wen-Jer
    贡献者: 淡江大學物理學系
    日期: 2000-04
    上传时间: 2013-07-09 15:17:38 (UTC+8)
    出版者: College Park: American Physical Society
    摘要: We undertake an extensive analytical study of the (1+1)-dimensional discrete superrough growth processes, which are the growth processes with the global roughness exponent larger than 1. First, we obtain the exact expressions of the global interfacial width w(L,t), the local interfacial width relative to the substrate orientation w(l,t), and the local interfacial width relative to the local interfacial orientation wn(l,t), in terms of the equal-time height difference correlation functions G(r,t). These relations are exact and can be applied to all the (1+1)-dimensional discrete growth processes with periodic boundary conditions. Moreover, we show that the local roughness exponent must be smaller than 1 for the (1+1)-dimensional superrough growth processes with wn(l,t) retaining the same anomalous dynamic scaling behaviors as w(l,t); in contrast, the local roughness exponent must be equal to 1 for those with wn(l,t) retrieving the ordinary dynamic scaling behaviors.
    關聯: Physical Review E (Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics) 61(4), pp.3559-3563
    DOI: 10.1103/PhysRevE.61.3559
    显示于类别:[物理學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html期刊資訊0KbHTML146检视/开启
    index.html館藏資訊0KbHTML52检视/开启
    index.html0KbHTML62检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈