English  |  正體中文  |  简体中文  |  Items with full text/Total items : 62805/95882 (66%)
Visitors : 3923762      Online Users : 574
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/27807


    Title: Field penetration induced charge redistribution effects on the field emission properties of carbon nanotubes : a first-principle study
    Authors: Chen, Chun-Wei;Lee, Ming-hsien;Clark, S.-J.
    Contributors: 淡江大學物理學系
    Keywords: Field emission;Carbon nanotubes;First-principle;Workfunction
    Field emission;Carbon nanotubes;First-principle;Workfunction
    Date: 2004-04-30
    Issue Date: 2009-12-31 10:45:49 (UTC+8)
    Publisher: Netherlands: Elsevier
    Abstract: The effect of field penetration induced charge redistribution on the field emission properties of carbon nanotubes (CNTs) have been studied by the first-principle calculations. It is found that the carbon nanotube becomes polarized under external electric field leading to a charge redistribution. The resulting band bending induced by field penetration into the nanotube tip surface can further reduce the effective workfunction of the carbon nanotubes. The magnitude of the redistributed charge ΔQ is found to be nearly linear to the applied external field strength. In addition, we found that the capped (9, 0) zigzag nanotube demonstrates better field emission properties than the capped (5, 5) armchair nanotube due to the fact that the charge redistribution of π electrons along the zigzag-like tube axis is easier than for the armchair-like tube. The density of states (DOS) of the capped region of the nanotube is found to be enhanced with a value 30% higher than that of the sidewall part for the capped (5, 5) nanotube and 40% for the capped (9, 0) nanotube under an electric field of 0.33 V/Å. Such enhancements of the DOS at the carbon nanotube tip show that electrons near the Fermi level will emit more easily due to the change of the surface band structure resulting from the field penetration in a high field.
    The effect of field penetration induced charge redistribution on the field emission properties of carbon nanotubes (CNTs) have been studied by the first-principle calculations. It is found that the carbon nanotube becomes polarized under external electric field leading to a charge redistribution. The resulting band bending induced by field penetration into the nanotube tip surface can further reduce the effective workfunction of the carbon nanotubes. The magnitude of the redistributed charge ΔQ is found to be nearly linear to the applied external field strength. In addition, we found that the capped (9, 0) zigzag nanotube demonstrates better field emission properties than the capped (5, 5) armchair nanotube due to the fact that the charge redistribution of π electrons along the zigzag-like tube axis is easier than for the armchair-like tube. The density of states (DOS) of the capped region of the nanotube is found to be enhanced with a value 30% higher than that of the sidewall part for the capped (5, 5) nanotube and 40% for the capped (9, 0) nanotube under an electric field of 0.33 V/Å. Such enhancements of the DOS at the carbon nanotube tip show that electrons near the Fermi level will emit more easily due to the change of the surface band structure resulting from the field penetration in a high field.
    Relation: Applied Surface Science 228(1-4), pp.143-150
    DOI: 10.1016/j.apsusc.2004.01.004
    Appears in Collections:[Graduate Institute & Department of Physics] Journal Article

    Files in This Item:

    File SizeFormat
    index.html0KbHTML70View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback