English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 49064/83170 (59%)
造訪人次 : 6962797      線上人數 : 83
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/27600


    題名: The GaAs(001)-(2x4) surface : structure, chemistry, and adsorbates
    作者: Goringe, C. M.;Clark, L. J.;李明憲;Lee, M. H.;Payne, M. C.;Stich, I.;White, J. A.;Gillan, M. J.;Sutton, A. P.
    貢獻者: 淡江大學物理學系
    日期: 1997-02-27
    上傳時間: 2009-12-31 10:29:05 (UTC+8)
    出版者: American Chemical Society (ACS)
    摘要: A series of ab initio simulations, based on density functional theory, of the structure of the clean GaAs(001)-(2 × 4) surface and of C2H2, C2H4, and trimethylgallium (TMGa) adsorbates are described. This surface was selected because of its importance in the growth of GaAs by molecular beam epitaxy. After summarizing briefly the theoretical basis of the computational methods used in the paper, we review critically what is known from experiment and theory about the structure of the clean surface. We argue that there is now strong evidence in favor of the “trench dimer” model for the β-phase of the clean surface, while the structures of the α and γ phases are less settled. We then present ab initio simulations of the trench dimer, the three dimer, and the gallium rebonded models of the clean GaAs(001)-(2 × 4) surface and discuss their common structural and bonding features. Ab initio simulations of C2H2 and C2H4 adsorbates at arsenic dimers of the GaAs(001)-(2 × 4) surface are then presented. The changes in the bonding configurations of both the adsorbates and the surface arsenic dimers are explained in terms of changes in the bond orders and local hybridization states. The As dimer bond is broken in the stable chemisorbed states of the molecules. However, an intermediate state, in which the As dimer is still intact, provides a significant barrier to chemisorption in both cases. This barrier, and its absence at the Si(001) surface, stems from the two extra electrons in the As dimer compared with the Si dimer. We then go on to describe the results of 14 ab initio simulations of structures connected with the chemisorption and decomposition of TMGa on the GaAs(001)-(2 × 4) surface. TMGa is commonly used in the growth of GaAs crystals from the vapor phase. The results of these simulations are used to explain a number of experimental observations concerning the surface coverage and the decomposition of TMGa to dimethylgallium and monomethylgallium. Significant technical aspects of the calculations, notably the number of relaxed layers in the slab calculations and the necessity to use gradient-corrected adsorption energies, are stressed. The paper also contains critical comments about ab initio simulations of the GaAs(001)-(2 × 4) clean surface and about the model based on a “linear combination of structural motifs”. Discussion of related experimental results appears throughout the paper.
    關聯: Journal of Physical Chemistry B 101(9), pp.1498-1509
    DOI: 10.1021/jp962853c
    顯示於類別:[物理學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    0KbUnknown198檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋