The ground-state properties in one-dimensional Hubbard model with on-site attraction and repulsion of electrons in the presence of magnetic field h are calculated by means of the exact Bethe-ansatz formalism and the generalized self-consistent field (GSCF) approach for general electron concentrations n and arbitrary interaction strength. The ground-state properties, including the energy, the average spin (magnetization) and the kinetic energy are compared over a wide range of parameter space. The GSCF theory is in qualitative and in some cases in good quantitative agreement with the exact results. The GSCF theory at U≤0 (or U≥0) differentiates the spin (or charge) energy gap from the BCS (or antiferromagnetic) order parameter and suggests a smooth crossover from the phase with the itinerant BCS-like behavior to the Bose condensation regime of the local pairs.
關聯:
International Journal of Modern Physics B 13(29-31), pp.3538-3545