English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 62805/95882 (66%)
造訪人次 : 3855857      線上人數 : 214
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/27396

    題名: A review of Hopfield neural networks for solving mathematical programming problems
    作者: Wena, Ue-Pyng;Lan, Kuen-Ming;Shih, Hsu-Shih
    貢獻者: 淡江大學經營決策學系
    關鍵詞: Hopfield neural networks;Energy function;Mathematical programming;penalty function;Lagrange multiplier;Primal and dual functions
    日期: 2009-11-01
    上傳時間: 2009-12-30 15:09:26 (UTC+8)
    出版者: Amsterdam: Elsevier BV * North-Holland
    摘要: The Hopfield neural network (HNN) is one major neural network (NN) for solving optimization or mathematical programming (MP) problems. The major advantage of HNN is in its structure can be realized on an electronic circuit, possibly on a VLSI (very large-scale integration) circuit, for an on-line solver with a parallel-distributed process. The structure of HNN utilizes three common methods, penalty functions, Lagrange multipliers, and primal and dual methods to construct an energy function. When the function reaches a steady state, an approximate solution of the problem is obtained. Under the classes of these methods, we further organize HNNs by three types of MP problems: linear, non-linear, and mixed-integer. The essentials of each method are also discussed in details. Some remarks for utilizing HNN and difficulties are then addressed for the benefit of successive investigations. Finally, conclusions are drawn and directions for future study are provided.
    關聯: European Journal of Operational Research 198(3), pp.675-687
    DOI: 10.1016/j.ejor.2008.11.002
    顯示於類別:[管理科學學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數
    A review of Hopfield neural networks for solving mathematical programming problems.pdf347KbAdobe PDF37檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋