English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 59169/92571 (64%)
造访人次 : 748171      在线人数 : 39
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/25511

    题名: Ab initio study of the reaction mechanism of singlet and triplet N2O and their intersystem crossing
    作者: 黃德彥;Hwang, Der-yan;Mebel, Alexander M.
    贡献者: 淡江大學化學學系
    日期: 2000-09-01
    上传时间: 2009-12-01
    出版者: Elsevier
    摘要: The lowest singlet and triplet potential energy surfaces of N2O and their intersection are studied using various ab initio methods including MP2, QCISD(T), CCSD(T), CASSCF and multireference configuration interaction method (MRCI). On the singlet surface, two local minima are found, linear NNO (A) and cyclic structure D. The latter lies ∼64 Full-size image (<1 K) higher in energy and is separated from the former by a barrier of about 15 Full-size image (<1 K) at the QCISD(T)/6-311+G(3df)//MP2/6-311+G(2d) and CCSD(T)/6-311+G(3df)//B3LYP/6-311G(d) levels. Both A and D can be produced from N2+O(1D) without barrier with exothermicity of 88.3 and 23.9 Full-size image (<1 K), respectively, at QCISD(T)/6-311+G(3df)//MP2/6-311+G(2d). On the triplet surface, no stable bound N2O structure exists although some plateau on the surface is found in the vicinity of the bent structure B, 73–77 Full-size image (<1 K) above linear A at the QCISD(T) and CCSD(T) levels. Singlet–triplet intersections are located both at the bent geometry (B1) with ∠NNO=114∘ and at the linear structure C. The computed energy of C, 60.3 Full-size image (<1 K) at the MRCI(10,9)/6-311+G(3df) level, closely agree with the experimental activation energy for N2O decomposition. C is minimum on the seam of crossing and has higher spin–orbit coupling than those for bent intersection structures. Thus, the spin-forbidden fragmentation N2O(1Σ+)→N2(1Σg+)+O(3P) should occur via structure C as a “transition state”. The calculations demonstrated that the use of QCISD(T), CCSD(T), full-valence active space CASSCF, or MRCI theoretical levels is essential to compute accurate relative energies of B1 and C.
    關聯: Chemical physics 259(1), pp.89-97
    DOI: 10.1016/S0301-0104(00)00212-3
    显示于类别:[化學學系暨研究所] 期刊論文


    档案 大小格式浏览次数



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈