淡江大學機構典藏:Item 987654321/25395
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 62830/95882 (66%)
造访人次 : 4030660      在线人数 : 920
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/25395


    题名: Theoretical Study of the Reaction Mechanism of Fe Atoms with H2O, H2S, O2 and H+
    作者: 黃德彥;Hwang, Der-yan;Mebel, Alexander M.
    贡献者: 淡江大學化學學系
    補正完畢
    日期: 2001-08-09
    上传时间: 2009-12-01
    出版者: American Chemical Society (ACS)
    摘要: Density functional B3LYP/6-31G**, B3LYP/6-311G**, B3LYP/6-311+G(3df,2p), and ab initio CCSD(T)/6-311G** calculations showed the reaction of free iron atoms with water in the ground quintet electronic state to proceed by the formation of a weakly bound Fe−OH2 molecular complex. The complex is slightly unbound at the CCSD(T)/6-311G** level but stable according to density functional calculations and can isomerize to the HFeOH molecule, overcoming a barrier of 15−33 kcal/mol (with respect to the reactants), but further decomposition of HFeOH to FeO and H2 is hindered by a high barrier. In the presence of protons (in acidic environment), iron atoms can easily attach H+ with formation of the quintet FeH+ molecules. The reaction of these molecules with water, q-FeH+ + H2O → q-HFeOH2+ → q-FeOH+ + H2, is exothermic and occurs without activation barrier. In solution, q-FeOH+ may attach another proton (if the Coulomb repulsion barrier between the two ions can be overcome) and dissociate to q-Fe2+ and H2O, so the water molecule assists oxidation of a neutral iron atom to Fe2+, and two protons can be converted into molecular hydrogen transferring their charge to Fe. The FeH+ molecules are also shown to readily react with molecular oxygen, producing FeOOH+ without energy barrier. The FeH+ + O2 reaction is more facile than the reaction of FeH+ with water due to higher overall exothermicity (68−88 kcal/mol vs 20−34 kcal/mol for FeH+ + H2O → FeOH+ + H2) and a lower barrier for the intermediate reaction step (14−17 vs 35−46 kcal/mol), which can be rate-determining if the reaction occurs in solution. The reaction mechanism involving sequential Fe(5D) + H+ → q-FeH+, q-FeH+ + O2 → q-HFeO2+ → q-FeOOH+ reactions, followed by dissociation of q-FeOOH+ in solution yielding Fe2+, may be relevant to the first step of rusting. The calculations showed that electronically excited triplet iron atoms are more reactive with H2O. The triplet Fe + H2O → Fe−OH2 → HFeOH reaction is exothermic and has its transition state lying lower in energy than the reactants. No triplet-quintet intersystem crossing was found along the reaction pathway. The mechanism for the Fe + H2S reaction in the ground quintet electronic state is found to be similar to that for the reaction with water, but the critical barrier for the formation of the HFeSH intermediate is lower. Because of the reduced endothermicity of the Fe + H2S → FeS + H2 reaction and lower reaction barriers, the reaction of iron atoms with H2S is more likely to yield iron sulfide and molecular hydrogen than the reaction with water to produce FeO + H2.
    關聯: Journal of physical chemistry A 105(31), pp.7460-7467
    DOI: 10.1021/jp011324s
    显示于类别:[化學學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    0KbUnknown285检视/开启
    Theoretical Study of the Reaction Mechanism of Fe Atoms with H2O, H2S, O2 and H+.pdf99KbAdobe PDF3检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈