淡江大學機構典藏:Item 987654321/25264
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 62797/95867 (66%)
造访人次 : 3739345      在线人数 : 435
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/25264


    题名: Study of ion-molecule reactions and collisionally actived dissociation of dopamine and adrenaline by an ion trap mass spectrometer with an external ionization source
    作者: Wu, H. F.;吳慧芬;Lin, Ya-ping
    贡献者: 淡江大學化學學系
    关键词: ion–molecule reaction;collisionally-activated dissociation;ion trap mass spectrometry;tandem mass spectrometry;dimethyl ether;dopamine;adrenaline;CI;semi-empirical calculation
    日期: 2000-06-01
    上传时间: 2009-12-01
    出版者: IM Publications
    摘要: Study of the reaction mechanisms for ion–molecule reactions and for collisionally-activated dissociations (CAD) of dopamine and adrenaline has been performed using an external chemical ionization source quadrupole ion trap mass spectrometer. This work demonstrates the possibility of applying an external source ion trap instrument to perform selective ion–molecule reactions in the gas phase, due to its high sensitivity and low detection limits in mass spectrometry/mass spectrometry (MS/MS) mode. CAD experiments on ions with relative intensity as low as 0–2%, formed as ion–molecule products of dopamine and adrenaline, have been successfully performed. Study of some fragment ions of M+• and [M + H]+, observed in the chemical ionization (CI) spectra, by CAD techniques, permits elucidation of a series of mechanisms for the sequential dissociations of the M+• and [M + H]+ ions. Thus, the structural information obtained from this method is similar to that which would have been obtained if MSn had been performed for M+• and [M + H]+ ions. From the proposed CAD reaction mechanisms and the semi-empirical calculations, the favored reactive sites for formation of the adduct ions could be determined. The reactive site for protonation of dopamine is on the amino group, but for adrenaline, it is on the benzylic hydroxyl group. As to the reactive site for the CH3O=CH2+ ion addition, dopamine is either on the amino group or on the phenyl ring. However, adrenaline is only on the benzylic hydroxyl group. Temperature effects on the formation of the ion–molecule products were also investigated. It was shown that the best source temperature for formation of [M + H]+ and [M + 13]+ ions of dopamine is 200°C. Information about use of dimethyl ether (DME) as the reagent gas in the external chemical ionization of an ion trap mass spectrometer is provided.
    關聯: European journal of mass spectrometry 6(1), pp.65-77
    DOI: 10.1255/ejms.331
    显示于类别:[化學學系暨研究所] 期刊論文

    文件中的档案:

    档案 大小格式浏览次数
    index.html0KbHTML32检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈