English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 59160/92571 (64%)
造訪人次 : 739239      線上人數 : 42
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/25177

    題名: Reaction Mechanism of the Synthesis of Ammonia in the N2/H2/BeO and N2/H2/FeO Systems: A Theoretical Study
    作者: 黃德彥;Hwang, Der-yan;Mebel, Alexander M.
    貢獻者: 淡江大學化學學系
    日期: 2003-06-26
    上傳時間: 2009-12-01
    出版者: American Chemical Society (ACS)
    摘要: Ab initio G2M(MP2)//MP2/6-31G** and density functional B3LYP/6-311+G(3df,2p)//B3LYP/6-31G** calculations for various reactions in the N2/H2/BeO and N2/H2/FeO systems show that beryllium and iron oxides can catalyze N2 hydrogenation and the reaction mechanism involves a facile addition of H2 to metal oxide to form HMOH, which reacts with nitrogen through N2 insertion into the M−H bond. The insertion barrier decreases from 125.2 kcal/mol for the N2 + H2 reaction to 68.9 and 45.3 kcal/mol for N2 + HBeOH and N2 + HFeOH, respectively. After the formation of η2-N2(H)MOH intermediates, H atom can migrate from O to N with barriers of 59.2 and 50.7 kcal/mol leading to the N2H2MO complexes of metal oxides with diazene. The MO + H2 + N2 → N2H2MO reactions in the gas phase can easily occur providing that the chemically activated HMOH species formed at the first step do not dissipate their energy before they collide with the N2 molecule. The second and third stages of nitrogen hydrogenation in the presence of a metal oxide have been investigated taking BeO as a model. The results indicate that the gas-phase N2H2BeO + H2 → N2H4BeO and N2H4BeO + H2 → 2NH3 + BeO reactions can be facile because they exhibit the highest barriers of 10.4 and 13.4 kcal/mol, respectively, relative to the reactants.
    關聯: Journal of physical chemistry A 107(25), pp.5092-5100
    DOI: 10.1021/jp034416l
    顯示於類別:[化學學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數
    Reaction Mechanism of the Synthesis of Ammonia in the N2 H2 BeO and N2 H2 FeO Systems A Theoretical Study.pdf202KbAdobe PDF1檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋