English  |  正體中文  |  简体中文  |  Items with full text/Total items : 55990/90025 (62%)
Visitors : 11538929      Online Users : 65
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/25175

    Title: Reaction Mechanism of N2/H2 Conversion to NH3: A Theoretical Study
    Authors: 黃德彥;Hwang, Der-yan;Mebel, Alexander M.
    Contributors: 淡江大學化學學系
    Date: 2003-04-24
    Issue Date: 2009-12-01
    Publisher: American Chemical Society (ACS)
    Abstract: Ab initio G2M(MP2)//MP2/6-31G** calculations have been performed to study the molecular and radical chain reaction mechanisms of nitrogen hydrogenation through sequential additions of three H2 molecules to N2 producing NH3 + NH3. All reaction steps of the molecular mechanism are shown to be slow owing to high barriers for the molecular hydrogen additions. The three-center 1,1-H2 additions are significantly more preferable as compared to the four-center 1,2-additions. The most favorable reaction pathway involves the steps N2 + H2 → TS1a → NNH2, NNH2 + H2 → TS3a → H2NNH2, H2NNH2 → TS4 → HNNH3, and HNNH3 + H2 → TS5 → NH3 + NH3, with the barriers calculated as 125.2, 30.7, 60.5, and 24.6 kcal/mol, respectively. The addition of the first molecular hydrogen is thus the rate-determining stage of nitrogen hydrogenation. The formation of hydrazine can be facilitated by a spontaneous reaction of two cis-HNNH molecules by the dihydrogen transfer mechanism. The radical chain mechanism includes the N2 + H → N2H, N2H + H2 → HNNH + H, HNNH + H → N2H3, N2H3 + H2 → H2NNH2 + H, H2NNH2 + H → NH2 + NH3, and NH2 + H2 → NH3 + H sequential reactions with the barriers of 17.1, 41.6, 6.4, 29.1, 10.7, and 10.6 kcal/mol, respectively. Nitrogen hydrogenation can be catalyzed by H atoms with the barrier for the slowest reaction step decreasing from 125 to 42 kcal/mol. The reaction of two NH(3Σ-) radicals is predicted to be fast and to form N2 + H2 with high exothermicity. The reaction of two NH2 radicals can produce NNH2 + H2 with exothermicity of 19.8 kcal/mol and a barrier of 10.9 kcal/mol relative to the reactants, or NH3 + NH(3Σ-), through a barrierless, 14.3 kcal/mol exothermic, but spin-forbidden channel. We also report rate constants and equilibrium constants for all considered reactions calculated using the transition state theory and ab initio energies and molecular parameters, which can be employed for kinetic modeling of chemical processes involving nitrogen- and hydrogen-containing substances.
    Relation: Journal of physical chemistry A 107(16), pp.2865-2874
    DOI: 10.1021/jp0270349
    Appears in Collections:[Graduate Institute & Department of Chemistry] Journal Article

    Files in This Item:

    File Description SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback