English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 62805/95882 (66%)
造访人次 : 3993592      在线人数 : 288
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/25058

    题名: More spherical large fullerenes and multi-layer fullerene cages
    作者: Wang, Bo-cheng;王伯昌;Wang, Houng-Wei;Chang, Jian-Chuang;Tso, Hsi-Chun;Chou, Yu-Ma
    贡献者: 淡江大學化學學系
    关键词: Spherical large fullerenes;Multi-layer fullerene;van der Waals force
    日期: 2001-05-04
    上传时间: 2009-12-01
    出版者: Elsevier
    摘要: According to the experimental investigation, the carbon nano-particles have spherical multi-layer structure (also called onion-like carbon structure). Theoretically, the optimum structures of these large fullerenes contain highly faceted shapes with icosahedral symmetry. This discrepancy in structure may be attributed to the formation mechanism. Thus, a method is devised to construct spherical large fullerenes (C240, C540, C960, C2160, C2940, C3840, C4860) by using the triangular motif. The 5–7–5–7 shape defect is applied in this method for assembling the large spherical fullerenes which could transform the graphene sheet to a spherical motif via SW rearrangement. The geometry-optimized structures of large spherical fullerenes have been generated by molecular mechanics calculation. Then, the average radius and standard deviation of these large fullerenes were obtained to verify the spherical shape. The multi-layer fullerene with spherical shape was confirmed by the TEM observation. According to the structure analysis, the distance between two neighboring encapsulating carbons is about 3.5 Å, which approximately coincides with the distance between two layers of graphite. The van der Waals force per carbon atom and of multi-layer fullerene with the spherical shape generated by force field calculation, predict their relative stability.
    關聯: Journal of Molecular Structure : Theochem 540(1-3), pp.171-176
    DOI: 10.1016/S0166-1280(00)00739-9
    显示于类别:[化學學系暨研究所] 期刊論文


    档案 大小格式浏览次数



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈