淡江大學機構典藏:Item 987654321/24988
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 62830/95882 (66%)
造訪人次 : 4047566      線上人數 : 615
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/24988


    題名: From an Integrated Biochip Detection System to a Defensive Weapon Against the SARS-CoV Virus: OBMorph
    作者: Lee, Chih-kung;Lin, Chi-wan;Lin, Shi-ming;李世元;Lee, Adam Shih-yuan;Wu, Jiun-yan;Lee, Shu-sheng;Hsiao, Wen-hsin;Chen, Shih-jui;Wang, An-bang
    貢獻者: 淡江大學化學學系
    日期: 2004-06
    上傳時間: 2009-12-01
    出版者: Materials Research Society
    摘要: In this paper, an integrated multifunctional biochip detection system, which we call “OBMorph“, are presented. This unique system integrates several optoelectronic-based biological diagnostic tools such as an ellipsometer, a laser Doppler vibrometer/interferometer, a SPR (surface plasmon resonance) analyzer, an interference microscope, a photon tunneling microscope, an optical coherence tomography unit and a confocal scanning microscope. This OBMorph system, useful as a powerful optical metrology diagnostic tool, can be used at the beginning of sensor chip fabrication, on to signal detecting and monitoring, and to the final biological analysis. The principles and experimental results of this multifunctional biochip detection OBMorph system are presented.

    In addition, an innovative SARS (Severe Acute Respiratory Syndrome) virus denaturing chemical compound that was derived using the OBMorph system to study biolinker fabrication in biochips, are discussed. Several testing strategies are presented herein which proves the effectiveness of the new chemical compound, biochip technology in denaturing the SARS virus. Analysis under an atomic force microscope confirms the actual breaking down of the virus treated by the chemical compound. The fundamentals of how the chemical compound denatures the virus and renders it toxicity useless, is based on principles of nanotechnology and bio-mechanics. Results from preliminary studies show that this denaturing principle can be also effective against other deadly viruses and even bacteria. Some design strategies and innovative working mechanisms derived from study of this chemical compound which can denature the SARS-CoV, are also discussed.
    關聯: Materials Research Society symposium proceedings 820
    DOI: 10.1557/PROC-820-O9.8
    顯示於類別:[化學學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML49檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋