English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 50122/85141 (59%)
造访人次 : 7889641      在线人数 : 40
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/24416

    题名: Modeling asian stock returns with a more general parametric GARCH specification
    其它题名: 一個新的參數化GARCH模型在亞洲股市上的應用
    作者: 王凱立;Wang, Kai-li
    贡献者: 淡江大學國際貿易學系暨國際企業研究所
    关键词: GARCH;skewness;high peakedness;kurtosis;forecasting;asymmetric;persistent
    日期: 2001-12-01
    上传时间: 2009-11-30 18:21:03 (UTC+8)
    出版者: 臺灣財務金融學會
    摘要: High frequency stock return data tend to exhibit characteristics such as volatility clustering, volatility persistence, leverage effects, and properties of nonnormal unconditional distributions reflected in the form of skewness, high peakedness, and excess kurtosis. Although traditional GARCH models that employ leptokurtic distributions have been found useful to account for the conditional heteroscedasticity and leptokurtosis, they have difficulty in accommodating other stylized effects commonly observed in high frequency data. This paper attempts to rectify this deficiency by introducing a more general GJR IGARCH-EGB2 model, which not only considers the flexible distributional characteristics associated with the exponential beta distribution, but also incorporates the asymmetric conditional variance and integrated GARCH process into model consideration. Likelihood ratio tests, goodness of fit tests, distribution plots, and out-of-sample forecasts generate a preponderance of evidence to support the innovative GJR IGARCH-EGB2 specification over conventional competing alternatives presented in the literature.
    關聯: 財務金融學刊9(3),頁21-52
    DOI: 10.6545/JFS.2001.9(3).2
    显示于类别:[國際企業學系暨研究所] 期刊論文


    档案 大小格式浏览次数



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈