English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 49064/83169 (59%)
造訪人次 : 6952859      線上人數 : 93
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/24416


    題名: Modeling asian stock returns with a more general parametric GARCH specification
    其他題名: 一個新的參數化GARCH模型在亞洲股市上的應用
    作者: 王凱立;Wang, Kai-li
    貢獻者: 淡江大學國際貿易學系暨國際企業研究所
    關鍵詞: GARCH;skewness;high peakedness;kurtosis;forecasting;asymmetric;persistent
    日期: 2001-12
    上傳時間: 2009-11-30 18:21:03 (UTC+8)
    出版者: 臺灣財務金融學會
    摘要: High frequency stock return data tend to exhibit characteristics such as volatility clustering, volatility persistence, leverage effects, and properties of nonnormal unconditional distributions reflected in the form of skewness, high peakedness, and excess kurtosis. Although traditional GARCH models that employ leptokurtic distributions have been found useful to account for the conditional heteroscedasticity and leptokurtosis, they have difficulty in accommodating other stylized effects commonly observed in high frequency data. This paper attempts to rectify this deficiency by introducing a more general GJR IGARCH-EGB2 model, which not only considers the flexible distributional characteristics associated with the exponential beta distribution, but also incorporates the asymmetric conditional variance and integrated GARCH process into model consideration. Likelihood ratio tests, goodness of fit tests, distribution plots, and out-of-sample forecasts generate a preponderance of evidence to support the innovative GJR IGARCH-EGB2 specification over conventional competing alternatives presented in the literature.
    關聯: 財務金融學刊9(3),頁21-52
    DOI: 10.6545/JFS.2001.9(3).2
    顯示於類別:[國際企業學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML19檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋