English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 49064/83170 (59%)
造訪人次 : 6962800      線上人數 : 83
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/23607


    題名: A study of value-at-risk on portfolio in stock return using DCC multivariate GARCH
    作者: Lee, Ming-chih;Chiou, Jer-shiou;Lin, Cho-min
    貢獻者: 淡江大學財務金融學系
    日期: 2006-05
    上傳時間: 2009-11-30 17:46:21 (UTC+8)
    出版者: Taylor & Francis
    摘要: This study blends the simplicity and empirical success of univariate GARCH processes with an easy to estimate and interpret dynamic correlation estimator. A two step estimator and a simple test are employed to verify the null of constant correlation against an alternative of dynamic conditional correlation. The real strength of the DCC estimation process is its flexibility of univariate GARCH but not the complexity of conventional multivariate GARCH, therefore large correlation matrices can be estimated. One of the primary motivations for this study is that the correlations between assets are not constant through time. The focus of the study is hence to explore the empirical applicability of the multivariate DCC-GARCH model when estimating large conditional covariance matrices. Among the adopted models, DCC-GARCH(1,1)- t can be considered as the best model in measuring VaR, and DCC-GARCH(1,1) can be considered as the second best, while SMA is in the last. The results have suggested that a more complete model which carries more time series characteristics may outperform the others in the sample.
    關聯: Applied Financial Economics Letters 2(3), pp.183-188
    DOI: 10.1080/17446540500447645
    顯示於類別:[財務金融學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    0KbUnknown255檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋