English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 49378/84106 (59%)
造訪人次 : 7377743      線上人數 : 87
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/22936

    題名: Evaluation on neural network and fuzzy method-in terms of learning
    其他題名: 以學習的觀點對模糊以及類神經方法乘進行評估
    作者: Lee, Hung-Chang;Wang, Tao-jung
    貢獻者: 淡江大學資訊管理學系
    日期: 1996-12-11
    上傳時間: 2009-11-30 14:26:02 (UTC+8)
    出版者: Kenting: 臺灣大學; 中國模糊系統協會
    摘要: Like a dawn light scattering into the cloud sky of AI, neural network and fuzzy logic become state-of-the-art technologies in exploring the intellect. To make a judgement between both technologies, we propose an evaluation on them from the view point of learning classification. Since there are a variety of models proposed within both technologies, we focus on the most significant model, i.e., Back Propagation Network (BPN) (J. McClelland et al., 1986) and Wang's fuzzy rule generator (L.X. Wang and J.M Mendel, 1992). First in the evaluation, we introduce a gravity effect field to illustrate these two models' influence under the existence of one instance. After that, we virtually construct two classification problems and discuss the behaviors of both methods through the gravity effect field. Finally, we propose another two real examples to demonstrate the results. We conclude that Wang's method is more suitable for piecewise region classification and needs more representative or complete training samples than BPN. BPN is more training data tolerant and less network parameter sensible than that of Wang's fuzzy rule generator. However, basic instinct problems still exist, BPN behavior is more black box than fuzzy rule generator.
    關聯: Fuzzy Systems Symposium, 1996. Soft Computing in Intelligent Systems and Information Processing., Proceedings of the 1996 Asian, pp.79-84
    DOI: 10.1109/AFSS.1996.583561
    顯示於類別:[資訊管理學系暨研究所] 會議論文


    檔案 描述 大小格式瀏覽次數
    Evaluation on Neural Network and Fuzzy Method - in terms.pdf365KbAdobe PDF147檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋