English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 63993/96712 (66%)
造访人次 : 3602546      在线人数 : 261
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/21319


    题名: An Optimization Model for Visual Cryptography Schemes with Unexpanded Shares
    作者: Hsu, Ching-Sheng;Tu, Shu-Fen;Hou, Young-Chang
    贡献者: 淡江大學資訊管理學系
    关键词: Data privacy;Data storage equipment;Genetic algorithms;Optimization;Set theory;Visual communication;Optimization model;Pixels;Secret images;Visual cryptography;Cryptography
    日期: 2006
    上传时间: 2013-03-12 11:03:39 (UTC+8)
    出版者: Heidelberg: Springer
    摘要: Visual cryptography schemes encrypt a secret image into n shares so that any qualified set of shares enables one to visually decrypt the hidden secret; whereas any forbidden set of shares cannot leak out any secret information. In the study of visual cryptography, pixel expansion and contrast are two important issues. Since pixel-expansion based methods encode a pixel to many pixels on each share, the size of the share is larger than that of the secret image. Therefore, they result in distortion of shares and consume more storage space. In this paper, we propose a method to reach better contrast without pixel expansion. The concept of probability is used to construct an optimization model for general access structures, and the solution space is searched by genetic algorithms. Experimental result shows that the proposed method can reach better contrast and blackness of black pixels in comparison with Ateniese et al.’s.
    關聯: Lecture Notes in Computer Science 4203, pp.58-67
    DOI: 10.1007/11875604_8
    显示于类别:[資訊管理學系暨研究所] 期刊論文

    文件中的档案:

    档案 大小格式浏览次数
    index.html0KbHTML118检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈