English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 59061/92565 (64%)
造访人次 : 729399      在线人数 : 57
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/20735

    题名: Functional clustering and identifying substructures of longitudinal data
    作者: Chiou, Jeng-Min;Li, Pai-ling
    贡献者: 淡江大學統計學系
    关键词: Classification;Clustering;Functional data;Functional principal component analysis;Modes of variation;Stochastic processes
    日期: 2007-09-01
    上传时间: 2009-11-30 12:58:10 (UTC+8)
    出版者: Chichester: Wiley-Blackwell Publishing Ltd.
    摘要: A functional clustering (FC) method, k-centres FC, for longitudinal data is proposed. The k-centres FC approach accounts for both the means and the modes of variation differentials between clusters by predicting cluster membership with a reclassification step. The cluster membership predictions are based on a non-parametric random-effect model of the truncated Karhunen–Loève expansion, coupled with a non-parametric iterative mean and covariance updating scheme. We show that, under the identifiability conditions derived, the k-centres FC method proposed can greatly improve cluster quality as compared with conventional clustering algorithms. Moreover, by exploring the mean and covariance functions of each cluster, thek-centres FC method provides an additional insight into cluster structures which facilitates functional cluster analysis. Practical performance of the k-centres FC method is demonstrated through simulation studies and data applications including growth curve and gene expression profile data.
    關聯: Journal of the Royal Statistical Society B 69(4), pp.679-699
    DOI: 10.1111/j.1467-9868.2007.00605.x
    显示于类别:[統計學系暨研究所] 期刊論文


    档案 描述 大小格式浏览次数
    1369-7412_69(4)p679-699.pdf737KbAdobe PDF167检视/开启
    Functional clustering and identifying substructures of longitudinal data.pdf737KbAdobe PDF0检视/开启



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈