English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 57517/91034 (63%)
造访人次 : 13457134      在线人数 : 364
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/20729


    题名: Testing goodness of fit for a parametric family of link functions
    作者: Cheng, K. F.;吳忠武;Wu, Jong-wuu
    贡献者: 淡江大學統計學系
    关键词: Consistency of the test;Dimension reduction;Link function;Quasi-likelihood model;Regression parameters
    日期: 1994-06-01
    上传时间: 2009-11-30 12:57:58 (UTC+8)
    出版者: American Statistical Association
    摘要: We concern ourselves with the methods for testing the overall goodness of fit of a parametric family of link functions used for modeling the conditional mean of the response variable Y given the covariates X = x ∈ R P. The null hypothesis is that the conditional mean function is a known functional depending on βx and a finite number of parameters θ = (θ1,…, θq), where β is a p-dimensional row vector of regression parameters and x is a column vector. The proposed test statistic is derived from an “information” equivalence result and a dimension-reduction technique. The new test is very simple in computation. Also, it is generally consistent against broad class of alternatives and, asymptotically, the null distribution is independent of the underlying distribution of Y, given X = x. Practical examples are given to show the advantage of the proposed test. Furthermore, power comparisons with the test used by Su and Wei are also performed to indicate the usefulness of the new test. Particularly, we find that the new test has good power performance in discriminating between the probit and logit links.
    關聯: Journal of the American Statistical Association 89(426), pp.657-664
    DOI: 10.2307/2290868
    显示于类别:[統計學系暨研究所] 期刊論文

    文件中的档案:

    档案 大小格式浏览次数
    index.html0KbHTML109检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈