English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 60696/93562 (65%)
造訪人次 : 1042058      線上人數 : 22
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/20721


    題名: Testing goodness-of-fit of a logistic regression model with case–control data
    作者: Cheng, K. F.;Chen, Li-ching
    貢獻者: 淡江大學統計學系
    關鍵詞: Asymptotic distribution;Asymptotic power;Case–control data;Goodness of fit;Logistic regression
    日期: 2004-09-01
    上傳時間: 2009-11-30 12:57:42 (UTC+8)
    出版者: Elsevier
    摘要: A new test is proposed for testing the validity of the logistic regression model based on case–control data. The proposed test does not need a partition of the space of explanatory variables to handle the case of nonreplication. The new test is consistent against very general alternatives. The asymptotic distribution of the test statistic under a sequence of local alternatives is derived so that the behavior of the asymptotic power function of the new test can be studied. This result also gives the approximated null distribution of the test statistic. For practical sample sizes, the adequacy of the large-sample approximation to the null distribution of the test statistic are carefully examined. Power comparisons with other goodness-of-fit tests are performed to show the advantages of the new method. The test statistic is very simple to compute and the new test will be illustrated with examples.
    關聯: Journal of Statistical Planning and Inference 124(2), pp.409-422
    DOI: 10.1016/S0378-3758(03)00207-6
    顯示於類別:[統計學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML143檢視/開啟
    Testing goodness-of-fit of a logistic regression model with case–control data.pdf264KbAdobe PDF0檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋