English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 56088/90157 (62%)
造访人次 : 11548678      在线人数 : 181
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/20721


    题名: Testing goodness-of-fit of a logistic regression model with case–control data
    作者: Cheng, K. F.;Chen, Li-ching
    贡献者: 淡江大學統計學系
    关键词: Asymptotic distribution;Asymptotic power;Case–control data;Goodness of fit;Logistic regression
    日期: 2004-09-01
    上传时间: 2009-11-30 12:57:42 (UTC+8)
    出版者: Elsevier
    摘要: A new test is proposed for testing the validity of the logistic regression model based on case–control data. The proposed test does not need a partition of the space of explanatory variables to handle the case of nonreplication. The new test is consistent against very general alternatives. The asymptotic distribution of the test statistic under a sequence of local alternatives is derived so that the behavior of the asymptotic power function of the new test can be studied. This result also gives the approximated null distribution of the test statistic. For practical sample sizes, the adequacy of the large-sample approximation to the null distribution of the test statistic are carefully examined. Power comparisons with other goodness-of-fit tests are performed to show the advantages of the new method. The test statistic is very simple to compute and the new test will be illustrated with examples.
    關聯: Journal of Statistical Planning and Inference 124(2), pp.409-422
    DOI: 10.1016/S0378-3758(03)00207-6
    显示于类别:[統計學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML83检视/开启
    Testing goodness-of-fit of a logistic regression model with case–control data.pdf264KbAdobe PDF0检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈