English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 57615/91160 (63%)
造访人次 : 13550679      在线人数 : 309
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/20720


    题名: An interpolation method for adapting to sparse design in multivariate nonparametric regression
    作者: Chu, C. K.;鄧文舜;Deng, Wen-shuenn
    贡献者: 淡江大學統計學系
    关键词: Interpolation method;Local linear estimator;Nadaraya–Watson estimator;Nonparametric regression;Pseudodata;Sparse design
    日期: 2003-09-01
    上传时间: 2009-11-30 12:57:40 (UTC+8)
    出版者: Elsevier
    摘要: In the case of the multivariate random design nonparametric regression, an interpolation method is proposed to overcome the problem of unbounded finite sample variance for the local linear estimator (LLE) using a global bandwidth. This interpolation method simply uses the Nadaraya–Watson estimator with the product “Gaussian” kernel to construct pseudodata on equally spaced partition points of the support of the design density. Then the LLE using the “Epanechnikov” kernel is applied to smooth these equally spaced pseudodata. Our proposed estimator for the multivariate regression function has advantages in both the finite sample and the asymptotic cases. In the finite sample case, it always produces “smooth” regression function estimates, adapts “automatically and smoothly” to regions with sparse design, and has bounded conditional (and unconditional) bias and variance. On the other hand, in the asymptotic case, it has the same mean square error as the LLE. Empirical studies demonstrate that our suggested estimator is competitive with alternatives, in the sense of yielding both smaller sample mean integrated square error and smoother estimates.
    關聯: Journal of Statistical Planning and Inference 116(1), pp.91-111
    DOI: 10.1016/S0378-3758(02)00184-2
    显示于类别:[統計學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    An interpolation method for adapting to sparse design in multivariate nonparametric regression.pdf993KbAdobe PDF0检视/开启
    index.html0KbHTML102检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈