English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 57517/91034 (63%)
造访人次 : 13463472      在线人数 : 360
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/20702


    题名: An Improved Method of Predicting the Future: A Result on Improving the Stein-Rule Shrinkage Estimators of Regression Coefficients
    作者: Chang, Ching-Hui;Pal, Nabendu;Lin, Jyh-Jiuan;Lin, Jyh-Horng
    贡献者: 淡江大學統計學系;淡江大學國際企業學系
    关键词: Quadratic loss;risk function;shrinkage estimation
    日期: 1997-05-01
    上传时间: 2009-11-30 12:57:05 (UTC+8)
    出版者: 臺北縣:淡江大學未來學研究所
    摘要: A major use of linear regression models is to predict the future. An improved shrinkage estimator of the regression coefficients leads to a better of the dependent (response) variable in terms of lower Prediction mean squared error. Therefore, in this paper we consider the Problem of improved estimation of the unknown coefficients of a linear Regression model under usual normality assumption. It is well known that the ordinary least squares (OLS) estimator of the regression coefficients can be dominated by the Stein-rule estimators which are again dominated by their "Positive-part" versions. In this paper we show that the estimators can be dominated by a new type of estimators which are quite different from the "positive-part" estimators.
    關聯: Journal of futures studies=未來研究叢刊 1(2), pp.51-62
    显示于类别:[統計學系暨研究所] 期刊論文
    [國際企業學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    An Improved Method of Predicting the Future A Result on Improving the Stein-Rule Shrinkage Estimators of Regression Coefficients.pdf909KbAdobe PDF0检视/开启
    index.html0KbHTML154检视/开启
    index.html0KbHTML60检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈