English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 57615/91160 (63%)
造訪人次 : 13554434      線上人數 : 251
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/20649


    題名: Two-stage multiple comparisons with the average for normal distributions under heteroscedasticity
    其他題名: 雙階段的常態分配與平均的多重比較程序當變異數不等時
    作者: 吳淑妃;Wu, Shu-fei;Chen, Hubert J.
    貢獻者: 淡江大學統計學系
    關鍵詞: Two-stage procedure;Monte-Carlo techniques
    日期: 2000-04-28
    上傳時間: 2009-11-30 12:54:56 (UTC+8)
    出版者: Elsevier
    摘要: In this article we propose a two-stage procedure for multiple comparisons with the average for normal distributions under heteroscedasity. One-sided and two-sided confidence intervals are proposed. These intervals can be used to identify a subset which includes all no-worse-than-the-average treatments in an experimental design and to identify better-than-the-average, worse-than-the-average and not-much-different-from-the-average products in agriculture, stock market, medical research, and auto models. An upper limit of critical values are obatined using Bonferroni inequality. But the approximate values are shown to be too conservative compared with the simulation critical values in Table 7. Therefore, simulation critical values should be used in our multiple comparison procedures. Statistical tables and software programs are provided for use in practice.
    關聯: Computational Statistics and Data Analysis 33(2), pp.201-213
    DOI: 10.1016/S0167-9473(99)00052-3
    顯示於類別:[統計學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML92檢視/開啟
    Two-stage multiple comparisons with the average for normal distributions under heteroscedasticity.pdf104KbAdobe PDF0檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋