English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 63998/96745 (66%)
造訪人次 : 3657559      線上人數 : 170
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/20640


    題名: A Note on Robustness of Normal Variance Estimators Under t-Distributions
    作者: 林志娟;Lin, Jyh-jiuan;Pal, Nabendu
    貢獻者: 淡江大學統計學系
    關鍵詞: Risk functions;Scale equivariant estimators;Primary 62C15;Secondary 62H12
    日期: 2005-05-01
    上傳時間: 2009-11-30 12:54:38 (UTC+8)
    出版者: Philadelphia: Taylor & Francis Inc.
    摘要: In many real life problems one assumes a normal model because the sample histogram looks unimodal, symmetric, and/or the standard tests like the Shapiro-Wilk test favor such a model. However, in reality, the assumption of normality may be misplaced since the normality tests often fail to detect departure from normality (especially for small sample sizes) when the data actually comes from slightly heavier tail symmetric unimodal distributions. For this reason it is important to see how the existing normal variance estimators perform when the actual distribution is a t-distribution with k degrees of freedom (d.f.) (t k -distribution). This note deals with the performance of standard normal variance estimators under the t k -distributions. It is shown that the relative ordering of the estimators is preserved for both the quadratic loss as well as the entropy loss irrespective of the d.f. and the sample size (provided the risks exist).
    關聯: Communications in Statistics: Theory and Methods 34(5), pp.1117-1126
    DOI: 10.1081/STA-200056812
    顯示於類別:[統計學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    A Note on Robustness of Normal Variance Estimators Under t-Distributions.pdf395KbAdobe PDF2檢視/開啟
    index.html0KbHTML274檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋