淡江大學機構典藏:Item 987654321/20618
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 60861/93638 (65%)
造访人次 : 1106892      在线人数 : 33
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/20618


    题名: A Simulation Study of Multiple Comparisons with the Average under Heteroscedasticity
    作者: 吳淑妃;Wu, Shu-fei;Liao, B. X.
    贡献者: 淡江大學統計學系
    关键词: Two-stage MCA, Single-stage MCA, Monte-Carlo simulation
    日期: 2004-01-01
    上传时间: 2009-11-30 12:53:54 (UTC+8)
    出版者: Taylor & Francis
    摘要: In many experimental situations, the average treatment performance within its own group is used as a benchmark to be compared with each individual treatment. Multiple comparison procedures with the average (MCA) are thus proposed. A simulation comparison study of the traditional MCA, the single-stage MCA and the two-stage MCA for normal distribution under heteroscedasticity is investigated by the Monte-Carlo techniques in this paper. It was found that the two-stage MCA has shorter confidence length than the single-stage MCA for most cases and it is also more robust for non-normal distributions. Therefore, the two-stage MCA is recommended. But when the additional samples at the second stage could be costly, the data-analysis oriented single-stage MCA can be used. A biometrical example to illustrate the single-stage MCA and the two-stage MCA with equal confidence length is also given in this article.
    關聯: Communications in Statistics : Simulation and Computation 33(3), pp. 639-659
    DOI: 10.1081/SAC-200033355
    显示于类别:[統計學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    A Simulation Study of Multiple Comparisons with the Average under Heteroscedasticity.pdf361KbAdobe PDF1检视/开启
    index.html0KbHTML167检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈