English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 60696/93562 (65%)
造访人次 : 1055558      在线人数 : 36
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/20607

    题名: Multiple comparison procedures with the average for scale families: normal and exponential populations
    其它题名: 尺度參數與平均比較的多重比較程序
    作者: 吳淑妃;Wu, Shu-fei;Chen, Hubert J.
    贡献者: 淡江大學統計學系
    关键词: Subset selection;simultaneous confidence intervals;Bonfer-roni inequality;Pearsonian system;simulation
    日期: 1999-01-01
    上传时间: 2009-11-30 12:53:33 (UTC+8)
    出版者: Taylor & Francis
    摘要: In this article, multiple comparison procedures with the average of scale parameters for normal and exponential populations are proposed. A subset selection procedure and a confidence interval procedure are investigated. These procedures will have broad applicability in identifying groups of treatments with smaller than the average, larger than the average and not different from the average variability in various fields. Bonferroni inequality is used to bound the probability of a correct selection and the coverage probability of confidence intervals. The Pearson’s approximation to the sampling distribution of the log chi-square ratio utilized in both subset selection and confidence intervals is shown to be satisfactory compared with the simulation results. Statistical tables to implement these procedures for the case of equal sample sizes are provided for use in practice.
    關聯: Communications in Statistics : Simulation and Computation 28(1), pp.73-98
    DOI: 10.1080/03610919908813536
    显示于类别:[統計學系暨研究所] 期刊論文


    档案 描述 大小格式浏览次数
    Multiple comparison procedures with the average for scale families normal and exponential populations.pdf917KbAdobe PDF1检视/开启



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈