English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 57526/91034 (63%)
造訪人次 : 13487368      線上人數 : 386
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/20593


    題名: One-Sample Bayesian Predictive Interval of Future Ordered Observations for the Pareto Distribution
    作者: Wu, J. W.;吳淑妃;Wu, Shu-fei;Yu, C. M.
    貢獻者: 淡江大學統計學系
    日期: 2007-04-01
    上傳時間: 2009-11-30 12:53:01 (UTC+8)
    出版者: Springer
    摘要: Nigm et al. (2003, statistics 37: 527–536) proposed Bayesian method to obtain predictive interval of future ordered observation Y (j) (r < j≤ n ) based on the right type II censored samples Y (1) < Y (2) < ... < Y (r) from the Pareto distribution. If some of Y (1) < ... < Y (r-1) are missing or false due to artificial negligence of typist or recorder, then Nigm et al.’s method may not be an appropriate choice. Moreover, the conditional probability density function (p.d.f.) of the ordered observation Y (j) (r < j ≤ n ) given Y (1) <Y (2) < ... < Y (r) is equivalent to the conditional p.d.f. of Y (j) (r < j ≤ n ) given Y (r). Therefore, we propose another Bayesian method to obtain predictive interval of future ordered observations based on the only ordered observation Y (r), then compares the length of the predictive intervals when using the method of Nigm et al. (2003, statistics 37: 527–536) and our proposed method. Numerical examples are provided to illustrate these results.
    關聯: Quality and Quantity 41(2), pp.251-263
    DOI: 10.1007/s11135-006-9001-2
    顯示於類別:[統計學系暨研究所] 期刊論文
    [統計學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML97檢視/開啟
    One-Sample Bayesian Predictive Interval of Future Ordered Observations for the Pareto Distribution.pdf118KbAdobe PDF0檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋