English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 49064/83170 (59%)
造訪人次 : 6961803      線上人數 : 46
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/20160


    題名: Rough Set Theory in analyzing the attributes of combination values for the insurance market
    作者: Shyng, Jhieh-yu;Wang, Fang-kuo;Tzeng, Gwo-hshiung;吳坤山;Wu, Kun-shan
    貢獻者: 淡江大學企業管理學系
    關鍵詞: Rough Set Theory;Combination values;Insurance marketing;Decision rule;Expert knowledge
    日期: 2007-01-01
    上傳時間: 2009-11-30 12:35:49 (UTC+8)
    出版者: Elsevier
    摘要: Based on Rough Set Theory, this research addresses the effect of attributes/features on the combination values of decisions that insurance companies make to satisfy customers’ needs. Attributes impact on combination values by yielding sets with fewer objects (such as one or two objects), which increases both the lower and upper approximations. It also increases the decision rules, and degrades the precision of decisions. Our approach redefines the value set of attributes through expert knowledge by reducing the independent data set and reclassifying it. This approach is based on an empirical study. The results demonstrate that the redefined combination values of attributes can contribute to the precision of decisions in insurance marketing. Following an empirical analysis, we use a hit test that incorporates 50 validated sample data into the decision rule so that the hit rate reaches 100%. The results of the empirical study indicate that the generated decision rules can cover all new data. Consequently, we believe that the effects of attributes on combination values can be fully applied in research into insurance marketing.
    關聯: Expert Systems with Applications 32(1), pp.56-64
    DOI: 10.1016/j.eswa.2005.11.002
    顯示於類別:[企業管理學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    0KbUnknown193檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋