English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 56842/90542 (63%)
造访人次 : 12283237      在线人数 : 70
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/19806

    题名: Generalized confidence intervals for the largest value of some functions of parameters under normality
    作者: Chang, Y. P.;Huang, W. T.
    贡献者: 淡江大學經營決策學系
    关键词: Bayesian confidence interval;Generalized confidence interval;Quantile;Signal-to-noise ratio
    日期: 2000-10
    上传时间: 2013-08-08 14:47:40 (UTC+8)
    出版者: Taipei: Academia Sinica * Institute of Statistical Science
    摘要: This paper deals with generalized confidence intervals (GCIs) for the maximum value of functions of parameters of interest in the presence of nuisance parameters. For k(≥ 2) normal populations, we propose GCIs for, respectively, the largest mean, the largest quantile and the largest signal-to-noise ratio. For the case of the largest mean, it is shown that the proposed GCIs are better than those of Chen and Dudewicz (1973a, b). A new measure of efficiency is proposed and some Monte Carlo comparisons between the proposed method and the known method are performed. We also show that in several situations the GCIs are equivalent to Bayesian confidence intervals by employing improper prior distributions. Illustration is made to some real data.
    關聯: Statistica Sinica 10(4), pp.1369-1383
    显示于类别:[管理科學學系暨研究所] 期刊論文


    档案 大小格式浏览次数



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈