淡江大學機構典藏:Item 987654321/19752
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 57970/91504 (63%)
造访人次 : 13686022      在线人数 : 53
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/19752


    题名: Generalized subset selection procedures under heteroscedasticity
    作者: Chang, Yi-ping;黃文濤;Huang, Wen-tao
    贡献者: 淡江大學經營決策學系
    关键词: Ranking and selection;Generalized subset selection procedure;Generalized probability of correct selection;Quantile;Signal-to-noise ratio 1. Introduction
    日期: 2001-10-01
    上传时间: 2009-11-30 12:20:46 (UTC+8)
    出版者: Elsevier
    摘要: In this paper, we propose and study a generalized subset selection procedure for selecting the best population. Based on the concept of generalized subset selection procedure, some selection procedures for normal populations are proposed and studied. They are used, respectively, to select the best population (populations) with respect to the largest mean, the largest pth quantile and the largest signal-to-noise ratio. For the case of common unknown variance, the proposed generalized subset selection procedure for selecting the largest mean becomes exactly the same as that has been given in Hsu (in: T.J. Santner, A.C. Tamhane (Eds.), Design of Experiments: Ranking and Selection, Marcel Dekker, New York, 1984, pp. 179–198). A Monte Carlo study shows that the proposed generalized subset selection procedures behave satisfactorily. An illustration of a set of real data is also given.
    關聯: Journal of Statistical Planning and Inference 98(1-2), pp.239-258
    DOI: 10.1016/S0378-3758(00)00305-0
    显示于类别:[管理科學學系暨研究所] 期刊論文

    文件中的档案:

    档案 大小格式浏览次数
    0KbUnknown206检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈