English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 49279/83828 (59%)
造訪人次 : 7146116      線上人數 : 46
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/19604


    題名: 時間數列模型對股價指數報酬率預測性之再評估
    其他題名: Re-examining the Predictability of Stock Index Return--Evidence from Time Series Models
    作者: 邱建良;陳君達;黃駿逸
    貢獻者: 淡江大學財務金融學系
    關鍵詞: 預測性;股價指數報酬;Predictability;Stock index return
    日期: 2005-07-01
    上傳時間: 2009-11-11 09:19:04 (UTC+8)
    出版者: 東海大學
    摘要: 過去已有許多學者針對股價報酬之可預測性提出不同的觀點,本文改以整體經濟風險因素為背景來切入股價指數可預測性的論點,運用向量自我迴歸模型(VAR)、誤差修正模型(ECM)、一般自我迴歸條件異質非對稱變異數模型(EGARCH)、卡爾曼濾嘴模型(Kalman Filter)及馬可夫狀態轉換模型(Markov switch),分別就美國、英國、德國與日本等四個工業大國的股價指數作跨市場不同預測模型的績效比較。實證結果指出,在英德股市預測中,馬可夫狀態轉換模型較能在短期間內預測股價報酬率的脈動。在長期來看,誤差修正模型則有較佳的預測能力。對日本股市而言,於短期預測中的最佳模型亦為馬可夫狀態轉換模型,而在長期預測下的最佳模型為誤差修正模型。而在預測美股報酬走勢方面則產生了明顯不同的績效衡量結果,在MAD法中以聯立式向量自我迴歸模型有較佳的表現,在RMSE法中則認為EGARCH會有較佳的預測結果。
    Although the predictability of stock return has been an object of study for a long time, there is little agreement as to the forecast the stock index returns. In this paper we choose macroeconomics risk factors and employ time series models: Vector Autoregressive (VAR) model, Error Correction Model (ECM), Generalized AutoRegression Conditional Heterskedasticity (GARCH) model, Kalman filter Model (KFM) and Markov switch model to forecast the stock index return of US, UK, Germany and Japan. The results show that the forecasting performance of the Markov switch model is better than other models in short run and the ECM is the best model in long run in UK and Germany. For Japan, the Markov switch and the ECM have better forecasting performances in short run and long run respectively. For US, the VAR and EGARCH have better predictabilities in short run and long run.
    關聯: 東海管理評論 7(1),頁 167-192
    顯示於類別:[財務金融學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    0KbUnknown167檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋