淡江大學機構典藏:Item 987654321/19545
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 63962/96568 (66%)
造訪人次 : 5423458      線上人數 : 397
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/19545


    題名: A methodology for selecting subset autoregressive time series models
    作者: Yu, Gwo-hsing;Lin, Yow-chang
    貢獻者: 淡江大學水資源及環境工程學系
    關鍵詞: Subset autoregressive model;inverse autocorrelation function;Bhansali information criterion
    日期: 199107
    上傳時間: 2009-11-04 17:06:34 (UTC+8)
    出版者: Blackwell
    摘要: In time series modelling, subset models are often desirable, especially when the data exhibit some form of periodic behaviour with a range of different natural periods in terms of days, weeks, months and years. Recently, Hokstad proposed a method based on personal judgement for selecting the first tentative model to obtain the best subset autoregressive model. The subjective approach adopted in the Hokstad method is a disadvantage in building up a computer program which could automatically select the appropriate model of a given time series. In this paper, we propose overcoming this disadvantage by employing the inverse autocorrelation function to select the first tentative model. In addition to sets of synthetic data, some well-known real series such as the D, E and F series of Box and Jenkins and the Canadian lynx data are analysed to validate the proposed method. The results indicate that the method can successfully detect the true model for a given time series.
    關聯: Journal of time series analysis 12(4), p.363-373
    DOI: 10.1111/j.1467-9892.1991.tb00090.x
    顯示於類別:[水資源及環境工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    0143-9782_12(4)p363-373.pdf473KbAdobe PDF494檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋