English  |  正體中文  |  简体中文  |  Items with full text/Total items : 51931/87076 (60%)
Visitors : 8494631      Online Users : 88
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/18456

    Title: 旋翼葉片及三維尾流之非線性耦合系統特徵值分析
    Other Titles: The Eigen-analysis of Nonlinear Blade-Wake Coupled System
    Authors: 王怡仁;彭暉元;李明峰;張鴻文
    Contributors: 淡江大學航空太空工程學系
    Keywords: 直昇機;旋翼葉片;尾流動力學;拍樸﹒延遲﹒扭轉;阻尼;Helicopter;Rotor Blades;Wake Dynamics;Resonance;Eigen-value.
    Date: 2001-03
    Issue Date: 2009-09-01 13:36:28 (UTC+8)
    Publisher: 桃園縣:元智大學
    Abstract: An eigen-analysis provides stability information for a rotor system, and it is also an important part of rotor aeroelastic analysis. The resonance phenomenon can be predicted by eigen-analysis as well. In this research, a new three-dimensional wake and nonlinear composite rotor blade flap-lag-torsion coupled model will be developed. The generalized dynamic wake model employed is based on an induced undetermined time dependent coefficients as aerodynamic states. The Galerkin's method and Duncan polynomials are used to expand this nonlinear coupled equation into equilibrium and disturbant parts. The nonlinear phenomenon will be investigated through eigen-analysis, especially for nonlinear resonance. Hopefully, some of the physical meanings behind the nonlinear resonance would be discovered through eigen-value point of view.
    特徵值(eigen-value) 及特徵向量(eigen-vector) 的分析是一般分析旋翼系統之穩定性常用的方法。前者可提供各種飛行狀況或是各種材質的旋翼葉J:I~統的阻尼及振動頻率,後者則可提供各模式
    (mode) 的振動模態(mode shape) ,更可幫助暸解旋翼葉片在各種飛行狀況的物理現象。本研究利用解析的方法將尾流運動方程、葉片空氣動力學及一個非線性複材葉片的結構運動方程整合成一搞合的系統,在某一選定的結構振動頻率範圍內,本研究將利用Galerkin 法及Duncan 多項式將其展開,並分成非線性平衡態及線性擾動態兩種方程式。而非線性部份將利用數值法求出與時間無關之靜、數,再與擾動項合併且線性化之後,利用Floquet 理論求解該系統之特徵值及特徵向量並尋求物理現象之解釋。
    Relation: 中華民國2001燃燒學會民航學會航太學會學術聯合會議論文集=CIROC CSCA AASRC joint conference,頁AA597-604
    Appears in Collections:[航空太空工程學系暨研究所] 會議論文

    Files in This Item:

    File SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback