淡江大學機構典藏:Item 987654321/127370
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64191/96979 (66%)
造訪人次 : 8202664      線上人數 : 7324
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/127370


    題名: Meta Network for Flow-Based Image Style Transfer
    作者: Yu, Yihjia Tsai;Hsiau-Wen Lin;Hwei Jen Lin;Chii-Jen Chen;Chen-Hsiang
    關鍵詞: meta learning;image style transfer;convolutional neural network;instance normalization;adversarial learning;flow-based model
    日期: 2025-05-16
    上傳時間: 2025-05-23 12:05:13 (UTC+8)
    出版者: Multidisciplinary Digital Publishing Institute
    摘要: A style transfer aims to produce synthesized images that retain the content of one image while adopting the artistic style of another. Traditional style transfer methods often require training separate transformation networks for each new style, limiting their adaptability and scalability. To address this challenge, we propose a flow-based image style transfer framework that integrates Randomized Hierarchy Flow (RH Flow) and a meta network for adaptive parameter generation. The meta network dynamically produces the RH Flow parameters conditioned on the style image, enabling efficient and flexible style adaptation without retraining for new styles. RH Flow enhances feature interaction by introducing a random permutation of the feature sub-blocks before hierarchical coupling, promoting diverse and expressive stylization while preserving the content structure. Our experimental results demonstrate that Meta FIST achieves superior content retention, style fidelity, and adaptability compared to existing approaches.
    關聯: Electronics 2025, 14(10) p.2035
    DOI: 10.3390/electronics14102035
    顯示於類別:[資訊工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML4檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋